mirror of https://github.com/oxen-io/session-ios
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
16 KiB
Swift
331 lines
16 KiB
Swift
import Clibsodium
|
|
import Sodium
|
|
import Curve25519Kit
|
|
|
|
extension Sign {
|
|
|
|
/**
|
|
Converts an Ed25519 public key to an X25519 public key.
|
|
- Parameter ed25519PublicKey: The Ed25519 public key to convert.
|
|
- Returns: The X25519 public key if conversion is successful.
|
|
*/
|
|
public func toX25519(ed25519PublicKey: PublicKey) -> PublicKey? {
|
|
var x25519PublicKey = PublicKey(repeating: 0, count: 32)
|
|
|
|
// FIXME: It'd be nice to check the exit code here, but all the properties of the object
|
|
// returned by the call below are internal.
|
|
let _ = crypto_sign_ed25519_pk_to_curve25519 (
|
|
&x25519PublicKey,
|
|
ed25519PublicKey
|
|
)
|
|
|
|
return x25519PublicKey
|
|
}
|
|
|
|
/**
|
|
Converts an Ed25519 secret key to an X25519 secret key.
|
|
- Parameter ed25519SecretKey: The Ed25519 secret key to convert.
|
|
- Returns: The X25519 secret key if conversion is successful.
|
|
*/
|
|
public func toX25519(ed25519SecretKey: SecretKey) -> SecretKey? {
|
|
var x25519SecretKey = SecretKey(repeating: 0, count: 32)
|
|
|
|
// FIXME: It'd be nice to check the exit code here, but all the properties of the object
|
|
// returned by the call below are internal.
|
|
let _ = crypto_sign_ed25519_sk_to_curve25519 (
|
|
&x25519SecretKey,
|
|
ed25519SecretKey
|
|
)
|
|
|
|
return x25519SecretKey
|
|
}
|
|
}
|
|
|
|
/// These extenion methods are used to generate a sign "blinded" messages
|
|
///
|
|
/// According to the Swift engineers the only situation when `UnsafeRawBufferPointer.baseAddress` is nil is when it's an
|
|
/// empty collection; as such our guard cases wihch return `-1` when unwrapping this value should never be hit and we can ignore
|
|
/// them as possible results.
|
|
///
|
|
/// For more information see:
|
|
/// https://forums.swift.org/t/when-is-unsafemutablebufferpointer-baseaddress-nil/32136/5
|
|
/// https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md#unsafebufferpointer
|
|
extension Sodium {
|
|
private static let scalarLength: Int = Int(crypto_core_ed25519_scalarbytes()) // 32
|
|
private static let noClampLength: Int = Int(crypto_scalarmult_ed25519_bytes()) // 32
|
|
private static let scalarMultLength: Int = Int(crypto_scalarmult_bytes()) // 32
|
|
private static let publicKeyLength: Int = Int(crypto_scalarmult_bytes()) // 32
|
|
private static let secretKeyLength: Int = Int(crypto_sign_secretkeybytes()) // 64
|
|
|
|
/// 64-byte blake2b hash then reduce to get the blinding factor
|
|
public func generateBlindingFactor(serverPublicKey: String, genericHash: GenericHashType) -> Bytes? {
|
|
/// k = salt.crypto_core_ed25519_scalar_reduce(blake2b(server_pk, digest_size=64).digest())
|
|
guard let serverPubKeyData: Data = serverPublicKey.dataFromHex() else { return nil }
|
|
guard let serverPublicKeyHashBytes: Bytes = genericHash.hash(message: [UInt8](serverPubKeyData), outputLength: 64) else {
|
|
return nil
|
|
}
|
|
|
|
/// Reduce the server public key into an ed25519 scalar (`k`)
|
|
let kPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
|
|
|
|
_ = serverPublicKeyHashBytes.withUnsafeBytes { (serverPublicKeyHashPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let serverPublicKeyHashBaseAddress: UnsafePointer<UInt8> = serverPublicKeyHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
crypto_core_ed25519_scalar_reduce(kPtr, serverPublicKeyHashBaseAddress)
|
|
return 0
|
|
}
|
|
|
|
return Data(bytes: kPtr, count: Sodium.scalarLength).bytes
|
|
}
|
|
|
|
/// Calculate k*a. To get 'a' (the Ed25519 private key scalar) we call the sodium function to
|
|
/// convert to an *x* secret key, which seems wrong--but isn't because converted keys use the
|
|
/// same secret scalar secret (and so this is just the most convenient way to get 'a' out of
|
|
/// a sodium Ed25519 secret key)
|
|
func generatePrivateKeyScalar(secretKey: Bytes) -> Bytes {
|
|
/// a = s.to_curve25519_private_key().encode()
|
|
let aPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarMultLength)
|
|
|
|
/// Looks like the `crypto_sign_ed25519_sk_to_curve25519` function can't actually fail so no need to verify the result
|
|
/// See: https://github.com/jedisct1/libsodium/blob/master/src/libsodium/crypto_sign/ed25519/ref10/keypair.c#L70
|
|
_ = secretKey.withUnsafeBytes { (secretKeyPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let secretKeyBaseAddress: UnsafePointer<UInt8> = secretKeyPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
return crypto_sign_ed25519_sk_to_curve25519(aPtr, secretKeyBaseAddress)
|
|
}
|
|
|
|
return Data(bytes: aPtr, count: Sodium.scalarMultLength).bytes
|
|
}
|
|
|
|
/// Constructs a "blinded" key pair (`ka, kA`) based on an open group server `publicKey` and an ed25519 `keyPair`
|
|
public func blindedKeyPair(serverPublicKey: String, edKeyPair: Box.KeyPair, genericHash: GenericHashType) -> Box.KeyPair? {
|
|
guard edKeyPair.publicKey.count == Sodium.publicKeyLength && edKeyPair.secretKey.count == Sodium.secretKeyLength else {
|
|
return nil
|
|
}
|
|
guard let kBytes: Bytes = generateBlindingFactor(serverPublicKey: serverPublicKey, genericHash: genericHash) else {
|
|
return nil
|
|
}
|
|
let aBytes: Bytes = generatePrivateKeyScalar(secretKey: edKeyPair.secretKey)
|
|
|
|
/// Generate the blinded key pair `ka`, `kA`
|
|
let kaPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.secretKeyLength)
|
|
let kAPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.publicKeyLength)
|
|
|
|
_ = aBytes.withUnsafeBytes { (aPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
return kBytes.withUnsafeBytes { (kPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let kBaseAddress: UnsafePointer<UInt8> = kPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
guard let aBaseAddress: UnsafePointer<UInt8> = aPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
crypto_core_ed25519_scalar_mul(kaPtr, kBaseAddress, aBaseAddress)
|
|
return 0
|
|
}
|
|
}
|
|
|
|
guard crypto_scalarmult_ed25519_base_noclamp(kAPtr, kaPtr) == 0 else { return nil }
|
|
|
|
return Box.KeyPair(
|
|
publicKey: Data(bytes: kAPtr, count: Sodium.publicKeyLength).bytes,
|
|
secretKey: Data(bytes: kaPtr, count: Sodium.secretKeyLength).bytes
|
|
)
|
|
}
|
|
|
|
/// Constructs an Ed25519 signature from a root Ed25519 key and a blinded scalar/pubkey pair, with one tweak to the
|
|
/// construction: we add kA into the hashed value that yields r so that we have domain separation for different blinded
|
|
/// pubkeys (this doesn't affect verification at all)
|
|
public func sogsSignature(message: Bytes, secretKey: Bytes, blindedSecretKey ka: Bytes, blindedPublicKey kA: Bytes) -> Bytes? {
|
|
/// H_rh = sha512(s.encode()).digest()[32:]
|
|
let H_rh: Bytes = Bytes(secretKey.sha512().suffix(32))
|
|
|
|
/// r = salt.crypto_core_ed25519_scalar_reduce(sha512_multipart(H_rh, kA, message_parts))
|
|
let combinedHashBytes: Bytes = (H_rh + kA + message).sha512()
|
|
let rPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
|
|
|
|
_ = combinedHashBytes.withUnsafeBytes { (combinedHashPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let combinedHashBaseAddress: UnsafePointer<UInt8> = combinedHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
crypto_core_ed25519_scalar_reduce(rPtr, combinedHashBaseAddress)
|
|
return 0
|
|
}
|
|
|
|
/// sig_R = salt.crypto_scalarmult_ed25519_base_noclamp(r)
|
|
let sig_RPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.noClampLength)
|
|
guard crypto_scalarmult_ed25519_base_noclamp(sig_RPtr, rPtr) == 0 else { return nil }
|
|
|
|
/// HRAM = salt.crypto_core_ed25519_scalar_reduce(sha512_multipart(sig_R, kA, message_parts))
|
|
let sig_RBytes: Bytes = Data(bytes: sig_RPtr, count: Sodium.noClampLength).bytes
|
|
let HRAMHashBytes: Bytes = (sig_RBytes + kA + message).sha512()
|
|
let HRAMPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
|
|
|
|
_ = HRAMHashBytes.withUnsafeBytes { (HRAMHashPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let HRAMHashBaseAddress: UnsafePointer<UInt8> = HRAMHashPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
crypto_core_ed25519_scalar_reduce(HRAMPtr, HRAMHashBaseAddress)
|
|
return 0
|
|
}
|
|
|
|
/// sig_s = salt.crypto_core_ed25519_scalar_add(r, salt.crypto_core_ed25519_scalar_mul(HRAM, ka))
|
|
let sig_sMulPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
|
|
let sig_sPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.scalarLength)
|
|
|
|
_ = ka.withUnsafeBytes { (kaPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let kaBaseAddress: UnsafePointer<UInt8> = kaPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
crypto_core_ed25519_scalar_mul(sig_sMulPtr, HRAMPtr, kaBaseAddress)
|
|
crypto_core_ed25519_scalar_add(sig_sPtr, rPtr, sig_sMulPtr)
|
|
return 0
|
|
}
|
|
|
|
/// full_sig = sig_R + sig_s
|
|
return (Data(bytes: sig_RPtr, count: Sodium.noClampLength).bytes + Data(bytes: sig_sPtr, count: Sodium.scalarLength).bytes)
|
|
}
|
|
|
|
/// Combines two keys (`kA`)
|
|
public func combineKeys(lhsKeyBytes: Bytes, rhsKeyBytes: Bytes) -> Bytes? {
|
|
let combinedPtr: UnsafeMutablePointer<UInt8> = UnsafeMutablePointer<UInt8>.allocate(capacity: Sodium.noClampLength)
|
|
|
|
let result = rhsKeyBytes.withUnsafeBytes { (rhsKeyBytesPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
return lhsKeyBytes.withUnsafeBytes { (lhsKeyBytesPtr: UnsafeRawBufferPointer) -> Int32 in
|
|
guard let lhsKeyBytesBaseAddress: UnsafePointer<UInt8> = lhsKeyBytesPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
guard let rhsKeyBytesBaseAddress: UnsafePointer<UInt8> = rhsKeyBytesPtr.baseAddress?.assumingMemoryBound(to: UInt8.self) else {
|
|
return -1 // Impossible case (refer to comments at top of extension)
|
|
}
|
|
|
|
return crypto_scalarmult_ed25519_noclamp(combinedPtr, lhsKeyBytesBaseAddress, rhsKeyBytesBaseAddress)
|
|
}
|
|
}
|
|
|
|
/// Ensure the above worked
|
|
guard result == 0 else { return nil }
|
|
|
|
return Data(bytes: combinedPtr, count: Sodium.noClampLength).bytes
|
|
}
|
|
|
|
/// Calculate a shared secret for a message from A to B:
|
|
///
|
|
/// BLAKE2b(a kB || kA || kB)
|
|
///
|
|
/// The receiver can calulate the same value via:
|
|
///
|
|
/// BLAKE2b(b kA || kA || kB)
|
|
public func sharedBlindedEncryptionKey(secretKey: Bytes, otherBlindedPublicKey: Bytes, fromBlindedPublicKey kA: Bytes, toBlindedPublicKey kB: Bytes, genericHash: GenericHashType) -> Bytes? {
|
|
let aBytes: Bytes = generatePrivateKeyScalar(secretKey: secretKey)
|
|
|
|
guard let combinedKeyBytes: Bytes = combineKeys(lhsKeyBytes: aBytes, rhsKeyBytes: otherBlindedPublicKey) else {
|
|
return nil
|
|
}
|
|
|
|
return genericHash.hash(message: (combinedKeyBytes + kA + kB), outputLength: 32)
|
|
}
|
|
|
|
/// This method should be used to check if a users standard sessionId matches a blinded one
|
|
public func sessionId(_ standardSessionId: String, matchesBlindedId blindedSessionId: String, serverPublicKey: String, genericHash: GenericHashType) -> Bool {
|
|
// Only support generating blinded keys for standard session ids
|
|
guard let sessionId: SessionId = SessionId(from: standardSessionId), sessionId.prefix == .standard else { return false }
|
|
guard let blindedId: SessionId = SessionId(from: blindedSessionId), blindedId.prefix == .blinded else { return false }
|
|
guard let kBytes: Bytes = generateBlindingFactor(serverPublicKey: serverPublicKey, genericHash: genericHash) else {
|
|
return false
|
|
}
|
|
|
|
/// From the session id (ignoring 05 prefix) we have two possible ed25519 pubkeys; the first is the positive (which is what
|
|
/// Signal's XEd25519 conversion always uses)
|
|
///
|
|
/// Note: The below method is code we have exposed from the `curve25519_verify` method within the Curve25519 library
|
|
/// rather than custom code we have written
|
|
guard let xEd25519Key: Data = try? Ed25519.publicKey(from: Data(hex: sessionId.publicKey)) else { return false }
|
|
|
|
/// Blind the positive public key
|
|
guard let pk1: Bytes = combineKeys(lhsKeyBytes: kBytes, rhsKeyBytes: xEd25519Key.bytes) else { return false }
|
|
|
|
/// For the negative, what we're going to get out of the above is simply the negative of pk1, so flip the sign bit to get pk2
|
|
/// pk2 = pk1[0:31] + bytes([pk1[31] ^ 0b1000_0000])
|
|
let pk2: Bytes = (pk1[0..<31] + [(pk1[31] ^ 0b1000_0000)])
|
|
|
|
return (
|
|
SessionId(.blinded, publicKey: pk1).publicKey == blindedId.publicKey ||
|
|
SessionId(.blinded, publicKey: pk2).publicKey == blindedId.publicKey
|
|
)
|
|
}
|
|
}
|
|
|
|
extension GenericHash {
|
|
public func hashSaltPersonal(
|
|
message: Bytes,
|
|
outputLength: Int,
|
|
key: Bytes? = nil,
|
|
salt: Bytes,
|
|
personal: Bytes
|
|
) -> Bytes? {
|
|
var output: [UInt8] = [UInt8](repeating: 0, count: outputLength)
|
|
|
|
let result = crypto_generichash_blake2b_salt_personal(
|
|
&output,
|
|
outputLength,
|
|
message,
|
|
UInt64(message.count),
|
|
key,
|
|
(key?.count ?? 0),
|
|
salt,
|
|
personal
|
|
)
|
|
|
|
guard result == 0 else { return nil }
|
|
|
|
return output
|
|
}
|
|
}
|
|
|
|
extension AeadXChaCha20Poly1305IetfType {
|
|
/// This method is the same as the standard AeadXChaCha20Poly1305IetfType `encrypt` method except it allows the
|
|
/// specification of a nonce which allows for deterministic behaviour with unit testing
|
|
public func encrypt(message: Bytes, secretKey: Bytes, nonce: Bytes, additionalData: Bytes? = nil) -> Bytes? {
|
|
guard secretKey.count == KeyBytes else { return nil }
|
|
|
|
var authenticatedCipherText = Bytes(repeating: 0, count: message.count + ABytes)
|
|
var authenticatedCipherTextLen: UInt64 = 0
|
|
|
|
let result = crypto_aead_xchacha20poly1305_ietf_encrypt(
|
|
&authenticatedCipherText, &authenticatedCipherTextLen,
|
|
message, UInt64(message.count),
|
|
additionalData, UInt64(additionalData?.count ?? 0),
|
|
nil, nonce, secretKey
|
|
)
|
|
|
|
guard result == 0 else { return nil }
|
|
|
|
return authenticatedCipherText
|
|
}
|
|
}
|
|
|
|
// MARK: - Objective-C Support
|
|
|
|
@objc public class SNBlindingUtils: NSObject {
|
|
@objc public static func userBlindedId(for openGroupPublicKey: String) -> String? {
|
|
let sodium: Sodium = Sodium()
|
|
|
|
guard let userEd25519KeyPair = Storage.shared.getUserED25519KeyPair() else {
|
|
return nil
|
|
}
|
|
guard let blindedKeyPair = sodium.blindedKeyPair(serverPublicKey: openGroupPublicKey, edKeyPair: userEd25519KeyPair, genericHash: sodium.genericHash) else {
|
|
return nil
|
|
}
|
|
|
|
return SessionId(.blinded, publicKey: blindedKeyPair.publicKey).hexString
|
|
}
|
|
}
|