mirror of https://github.com/oxen-io/session-ios
				
				
				
			
			You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			241 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Swift
		
	
			
		
		
	
	
			241 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Swift
		
	
| //
 | |
| //  Copyright (c) 2019 Open Whisper Systems. All rights reserved.
 | |
| //
 | |
| 
 | |
| import UIKit
 | |
| 
 | |
| // The image editor uses multiple coordinate systems.
 | |
| //
 | |
| // * Image unit coordinates.  Brush stroke and text content should be pegged to
 | |
| //   image content, so they are specified relative to the bounds of the image.
 | |
| // * Canvas coordinates.  We render the image, strokes and text into the "canvas",
 | |
| //   a viewport that has the aspect ratio of the view.  Rendering is transformed, so
 | |
| //   this is pre-tranform.
 | |
| // * View coordinates.  The coordinates of the actual view (or rendered output).
 | |
| //   Bounded by the view's bounds / viewport.
 | |
| //
 | |
| // Sometimes we use unit coordinates.  This facilitates a number of operations such
 | |
| // as clamping to 0-1, etc.  So in practice almost all values will be in one of six
 | |
| // coordinate systems:
 | |
| //
 | |
| // * unit image coordinates
 | |
| // * image coordinates
 | |
| // * unit canvas coordinates
 | |
| // * canvas coordinates
 | |
| // * unit view coordinates
 | |
| // * view coordinates
 | |
| //
 | |
| // For simplicity, the canvas bounds are always identical to view bounds.
 | |
| // If we wanted to manipulate output quality, we would use the layer's "scale".
 | |
| // But canvas values are pre-transform and view values are post-transform so they
 | |
| // are only identical if the transform has no scaling, rotation or translation.
 | |
| //
 | |
| // The "ImageEditorTransform" can be used to generate an CGAffineTransform
 | |
| // for the layers used to render the content.  In practice, the affine transform
 | |
| // is applied to a superlayer of the sublayers used to render content.
 | |
| //
 | |
| // CALayers apply their transform relative to the layer's anchorPoint, which
 | |
| // by default is the center of the layer's bounds.  E.g. rotation occurs
 | |
| // around the center of the layer.  Therefore when projecting absolute
 | |
| // (but not relative) coordinates between the "view" and "canvas" coordinate
 | |
| // systems, it's necessary to project them relative to the center of the
 | |
| // view/canvas.
 | |
| //
 | |
| // To simplify our representation & operations, the default size of the image
 | |
| // content is "exactly large enough to fill the canvas if rotation
 | |
| // but not scaling or translation were applied".  This might seem unusual,
 | |
| // but we have a key invariant: we always want the image to fill the canvas.
 | |
| // It's far easier to ensure this if the transform is always (just barely)
 | |
| // valid when scaling = 1 and translation = .zero.  The image size that
 | |
| // fulfills this criteria is calculated using
 | |
| // ImageEditorCanvasView.imageFrame(forViewSize:...).  Transforming between
 | |
| // the "image" and "canvas" coordinate systems is done with that image frame.
 | |
| @objc
 | |
| public class ImageEditorTransform: NSObject {
 | |
|     // The outputSizePixels is used to specify the aspect ratio and size of the
 | |
|     // output.
 | |
|     public let outputSizePixels: CGSize
 | |
|     // The unit translation of the content, relative to the
 | |
|     // canvas viewport.
 | |
|     public let unitTranslation: CGPoint
 | |
|     // Rotation about the center of the content.
 | |
|     public let rotationRadians: CGFloat
 | |
|     // x >= 1.0.
 | |
|     public let scaling: CGFloat
 | |
|     // Flipping is horizontal.
 | |
|     public let isFlipped: Bool
 | |
| 
 | |
|     public init(outputSizePixels: CGSize,
 | |
|                 unitTranslation: CGPoint,
 | |
|                 rotationRadians: CGFloat,
 | |
|                 scaling: CGFloat,
 | |
|                 isFlipped: Bool) {
 | |
|         self.outputSizePixels = outputSizePixels
 | |
|         self.unitTranslation = unitTranslation
 | |
|         self.rotationRadians = rotationRadians
 | |
|         self.scaling = scaling
 | |
|         self.isFlipped = isFlipped
 | |
|     }
 | |
| 
 | |
|     public class func defaultTransform(srcImageSizePixels: CGSize) -> ImageEditorTransform {
 | |
|         // It shouldn't be necessary normalize the default transform, but we do so to be safe.
 | |
|         return ImageEditorTransform(outputSizePixels: srcImageSizePixels,
 | |
|                                     unitTranslation: .zero,
 | |
|                                     rotationRadians: 0.0,
 | |
|                                     scaling: 1.0,
 | |
|                                     isFlipped: false).normalize(srcImageSizePixels: srcImageSizePixels)
 | |
|     }
 | |
| 
 | |
|     public var isNonDefault: Bool {
 | |
|         return !isEqual(ImageEditorTransform.defaultTransform(srcImageSizePixels: outputSizePixels))
 | |
|     }
 | |
| 
 | |
|     public func affineTransform(viewSize: CGSize) -> CGAffineTransform {
 | |
|         let translation = unitTranslation.fromUnitCoordinates(viewSize: viewSize)
 | |
|         // Order matters.  We need want SRT (scale-rotate-translate) ordering so that the translation
 | |
|         // is not affected affected by the scaling or rotation, which shoud both be about the "origin"
 | |
|         // (in this case the center of the content).
 | |
|         //
 | |
|         // NOTE: CGAffineTransform transforms are composed in reverse order.
 | |
|         let transform = CGAffineTransform.identity.translate(translation).rotated(by: rotationRadians).scaledBy(x: scaling, y: scaling)
 | |
|         return transform
 | |
|     }
 | |
| 
 | |
|     // This method normalizes a "proposed" transform (self) into
 | |
|     // one that is guaranteed to be valid.
 | |
|     public func normalize(srcImageSizePixels: CGSize) -> ImageEditorTransform {
 | |
|         // Normalize scaling.
 | |
|         // The "src/background" image is rendered at a size that will fill
 | |
|         // the canvas bounds if scaling = 1.0 and translation = .zero.
 | |
|         // Therefore, any scaling >= 1.0 is valid.
 | |
|         let minScaling: CGFloat = 1.0
 | |
|         let scaling = max(minScaling, self.scaling)
 | |
| 
 | |
|         // We don't need to normalize rotation.
 | |
| 
 | |
|         // Normalize translation.
 | |
|         //
 | |
|         // This is decidedly non-trivial because of the way that
 | |
|         // scaling, rotation and translation combine.  We need to
 | |
|         // guarantee that the image _always_ fills the canvas
 | |
|         // bounds.  So want to clamp the translation such that the
 | |
|         // image can be moved _exactly_ to the edge of the canvas
 | |
|         // and no further in a way that reflects the current
 | |
|         // crop, scaling and rotation.
 | |
|         //
 | |
|         // We need to clamp the translation to the valid "translation
 | |
|         // region" which is a rectangle centered on the origin.
 | |
|         // However, this rectangle is axis-aligned in canvas
 | |
|         // coordinates, not view coordinates.  e.g. if you have
 | |
|         // a long image and a square output size, you could "slide"
 | |
|         // the crop region along the image's contents.  That
 | |
|         // movement would appear diagonal to the user in the view
 | |
|         // but would be vertical on the canvas.
 | |
| 
 | |
|         // Normalize translation, Step 1:
 | |
|         //
 | |
|         // We project the viewport onto the canvas to determine
 | |
|         // its bounding box.
 | |
|         let viewBounds = CGRect(origin: .zero, size: self.outputSizePixels)
 | |
|         // This "naive" transform represents the proposed transform
 | |
|         // with no translation.
 | |
|         let naiveTransform = ImageEditorTransform(outputSizePixels: outputSizePixels,
 | |
|                                                   unitTranslation: .zero,
 | |
|                                                   rotationRadians: rotationRadians,
 | |
|                                                   scaling: scaling,
 | |
|                                                   isFlipped: self.isFlipped)
 | |
|         let naiveAffineTransform = naiveTransform.affineTransform(viewSize: viewBounds.size)
 | |
|         var naiveViewportMinCanvas = CGPoint.zero
 | |
|         var naiveViewportMaxCanvas = CGPoint.zero
 | |
|         var isFirstCorner = true
 | |
|         // Find the "naive" bounding box of the viewport on the canvas
 | |
|         // by projecting its corners from view coordinates to canvas
 | |
|         // coordinates.
 | |
|         //
 | |
|         // Due to symmetry, it should be sufficient to project 2 corners
 | |
|         // but we do all four corners for safety.
 | |
|         for viewCorner in [
 | |
|             viewBounds.topLeft,
 | |
|             viewBounds.topRight,
 | |
|             viewBounds.bottomLeft,
 | |
|             viewBounds.bottomRight
 | |
|             ] {
 | |
|                 let naiveViewCornerInCanvas = viewCorner.minus(viewBounds.center).applyingInverse(naiveAffineTransform).plus(viewBounds.center)
 | |
|                 if isFirstCorner {
 | |
|                     naiveViewportMinCanvas = naiveViewCornerInCanvas
 | |
|                     naiveViewportMaxCanvas = naiveViewCornerInCanvas
 | |
|                     isFirstCorner = false
 | |
|                 } else {
 | |
|                     naiveViewportMinCanvas = naiveViewportMinCanvas.min(naiveViewCornerInCanvas)
 | |
|                     naiveViewportMaxCanvas = naiveViewportMaxCanvas.max(naiveViewCornerInCanvas)
 | |
|                 }
 | |
|         }
 | |
|         let naiveViewportSizeCanvas: CGPoint = naiveViewportMaxCanvas.minus(naiveViewportMinCanvas)
 | |
| 
 | |
|         // Normalize translation, Step 2:
 | |
|         //
 | |
|         // Now determine the "naive" image frame on the canvas.
 | |
|         let naiveImageFrameCanvas = ImageEditorCanvasView.imageFrame(forViewSize: viewBounds.size, imageSize: srcImageSizePixels, transform: naiveTransform)
 | |
|         let naiveImageSizeCanvas = CGPoint(x: naiveImageFrameCanvas.width, y: naiveImageFrameCanvas.height)
 | |
| 
 | |
|         // Normalize translation, Step 3:
 | |
|         //
 | |
|         // The min/max translation can now by computed by diffing
 | |
|         // the size of the bounding box of the naive viewport and
 | |
|         // the size of the image on canvas.
 | |
|         let maxTranslationCanvas = naiveImageSizeCanvas.minus(naiveViewportSizeCanvas).times(0.5).max(.zero)
 | |
| 
 | |
|         // Normalize translation, Step 4:
 | |
|         //
 | |
|         // Clamp the proposed translation to the "max translation"
 | |
|         // from the last step.
 | |
|         //
 | |
|         // This is subtle.  We want to clamp in canvas coordinates
 | |
|         // since the min/max translation is specified by a bounding
 | |
|         // box in "unit canvas" coordinates.  However, because the
 | |
|         // translation is applied in SRT order (scale-rotate-transform),
 | |
|         // it effectively operates in view coordinates since it is
 | |
|         // applied last.  So we project it from view coordinates
 | |
|         // to canvas coordinates, clamp it, then project it back
 | |
|         // into unit view coordinates using the "naive" (no translation)
 | |
|         // transform.
 | |
|         let translationInView = self.unitTranslation.fromUnitCoordinates(viewBounds: viewBounds)
 | |
|         let translationInCanvas = translationInView.applyingInverse(naiveAffineTransform)
 | |
|         // Clamp the translation to +/- maxTranslationCanvasUnit.
 | |
|         let clampedTranslationInCanvas = translationInCanvas.min(maxTranslationCanvas).max(maxTranslationCanvas.inverse())
 | |
|         let clampedTranslationInView = clampedTranslationInCanvas.applying(naiveAffineTransform)
 | |
|         let unitTranslation = clampedTranslationInView.toUnitCoordinates(viewBounds: viewBounds, shouldClamp: false)
 | |
| 
 | |
|         return ImageEditorTransform(outputSizePixels: outputSizePixels,
 | |
|                                     unitTranslation: unitTranslation,
 | |
|                                     rotationRadians: rotationRadians,
 | |
|                                     scaling: scaling,
 | |
|                                     isFlipped: self.isFlipped)
 | |
|     }
 | |
| 
 | |
|     public override func isEqual(_ object: Any?) -> Bool {
 | |
|         guard let other = object as? ImageEditorTransform  else {
 | |
|             return false
 | |
|         }
 | |
|         return (outputSizePixels == other.outputSizePixels &&
 | |
|             unitTranslation == other.unitTranslation &&
 | |
|             rotationRadians == other.rotationRadians &&
 | |
|             scaling == other.scaling &&
 | |
|             isFlipped == other.isFlipped)
 | |
|     }
 | |
| 
 | |
|     public override var hash: Int {
 | |
|         return (outputSizePixels.width.hashValue ^
 | |
|             outputSizePixels.height.hashValue ^
 | |
|             unitTranslation.x.hashValue ^
 | |
|             unitTranslation.y.hashValue ^
 | |
|             rotationRadians.hashValue ^
 | |
|             scaling.hashValue ^
 | |
|             isFlipped.hashValue)
 | |
|     }
 | |
| 
 | |
|     open override var description: String {
 | |
|         return "[outputSizePixels: \(outputSizePixels), unitTranslation: \(unitTranslation), rotationRadians: \(rotationRadians), scaling: \(scaling), isFlipped: \(isFlipped)]"
 | |
|     }
 | |
| }
 |