mirror of https://github.com/oxen-io/session-ios
Fix translation normalization of the image editor transform.
parent
2ce057bcd0
commit
c315c1c9ef
@ -0,0 +1,240 @@
|
||||
//
|
||||
// Copyright (c) 2019 Open Whisper Systems. All rights reserved.
|
||||
//
|
||||
|
||||
import UIKit
|
||||
|
||||
// The image editor uses multiple coordinate systems.
|
||||
//
|
||||
// * Image unit coordinates. Brush stroke and text content should be pegged to
|
||||
// image content, so they are specified relative to the bounds of the image.
|
||||
// * Canvas coordinates. We render the image, strokes and text into the "canvas",
|
||||
// a viewport that has the aspect ratio of the view. Rendering is transformed, so
|
||||
// this is pre-tranform.
|
||||
// * View coordinates. The coordinates of the actual view (or rendered output).
|
||||
// Bounded by the view's bounds / viewport.
|
||||
//
|
||||
// Sometimes we use unit coordinates. This facilitates a number of operations such
|
||||
// as clamping to 0-1, etc. So in practice almost all values will be in one of six
|
||||
// coordinate systems:
|
||||
//
|
||||
// * unit image coordinates
|
||||
// * image coordinates
|
||||
// * unit canvas coordinates
|
||||
// * canvas coordinates
|
||||
// * unit view coordinates
|
||||
// * view coordinates
|
||||
//
|
||||
// For simplicity, the canvas bounds are always identical to view bounds.
|
||||
// If we wanted to manipulate output quality, we would use the layer's "scale".
|
||||
// But canvas values are pre-transform and view values are post-transform so they
|
||||
// are only identical if the transform has no scaling, rotation or translation.
|
||||
//
|
||||
// The "ImageEditorTransform" can be used to generate an CGAffineTransform
|
||||
// for the layers used to render the content. In practice, the affine transform
|
||||
// is applied to a superlayer of the sublayers used to render content.
|
||||
//
|
||||
// CALayers apply their transform relative to the layer's anchorPoint, which
|
||||
// by default is the center of the layer's bounds. E.g. rotation occurs
|
||||
// around the center of the layer. Therefore when projecting absolute
|
||||
// (but not relative) coordinates between the "view" and "canvas" coordinate
|
||||
// systems, it's necessary to project them relative to the center of the
|
||||
// view/canvas.
|
||||
//
|
||||
// To simplify our representation & operations, the default size of the image
|
||||
// content is "exactly large enough to fill the canvas if rotation
|
||||
// but not scaling or translation were applied". This might seem unusual,
|
||||
// but we have a key invariant: we always want the image to fill the canvas.
|
||||
// It's far easier to ensure this if the transform is always (just barely)
|
||||
// valid when scaling = 1 and translation = .zero. The image size that
|
||||
// fulfills this criteria is calculated using
|
||||
// ImageEditorCanvasView.imageFrame(forViewSize:...). Transforming between
|
||||
// the "image" and "canvas" coordinate systems is done with that image frame.
|
||||
@objc
|
||||
public class ImageEditorTransform: NSObject {
|
||||
// The outputSizePixels is used to specify the aspect ratio and size of the
|
||||
// output.
|
||||
public let outputSizePixels: CGSize
|
||||
// The unit translation of the content, relative to the
|
||||
// canvas viewport.
|
||||
public let unitTranslation: CGPoint
|
||||
// Rotation about the center of the content.
|
||||
public let rotationRadians: CGFloat
|
||||
// x >= 1.0.
|
||||
public let scaling: CGFloat
|
||||
// Flipping is horizontal.
|
||||
public let isFlipped: Bool
|
||||
|
||||
public init(outputSizePixels: CGSize,
|
||||
unitTranslation: CGPoint,
|
||||
rotationRadians: CGFloat,
|
||||
scaling: CGFloat,
|
||||
isFlipped: Bool) {
|
||||
self.outputSizePixels = outputSizePixels
|
||||
self.unitTranslation = unitTranslation
|
||||
self.rotationRadians = rotationRadians
|
||||
self.scaling = scaling
|
||||
self.isFlipped = isFlipped
|
||||
}
|
||||
|
||||
public class func defaultTransform(srcImageSizePixels: CGSize) -> ImageEditorTransform {
|
||||
// It shouldn't be necessary normalize the default transform, but we do so to be safe.
|
||||
return ImageEditorTransform(outputSizePixels: srcImageSizePixels,
|
||||
unitTranslation: .zero,
|
||||
rotationRadians: 0.0,
|
||||
scaling: 1.0,
|
||||
isFlipped: false).normalize(srcImageSizePixels: srcImageSizePixels)
|
||||
}
|
||||
|
||||
public var isNonDefault: Bool {
|
||||
return !isEqual(ImageEditorTransform.defaultTransform(srcImageSizePixels: outputSizePixels))
|
||||
}
|
||||
|
||||
public func affineTransform(viewSize: CGSize) -> CGAffineTransform {
|
||||
let translation = unitTranslation.fromUnitCoordinates(viewSize: viewSize)
|
||||
// Order matters. We need want SRT (scale-rotate-translate) ordering so that the translation
|
||||
// is not affected affected by the scaling or rotation, which shoud both be about the "origin"
|
||||
// (in this case the center of the content).
|
||||
//
|
||||
// NOTE: CGAffineTransform transforms are composed in reverse order.
|
||||
let transform = CGAffineTransform.identity.translate(translation).rotated(by: rotationRadians).scaledBy(x: scaling, y: scaling)
|
||||
return transform
|
||||
}
|
||||
|
||||
// This method normalizes a "proposed" transform (self) into
|
||||
// one that is guaranteed to be valid.
|
||||
public func normalize(srcImageSizePixels: CGSize) -> ImageEditorTransform {
|
||||
// Normalize scaling.
|
||||
// The "src/background" image is rendered at a size that will fill
|
||||
// the canvas bounds if scaling = 1.0 and translation = .zero.
|
||||
// Therefore, any scaling >= 1.0 is valid.
|
||||
let minScaling: CGFloat = 1.0
|
||||
let scaling = max(minScaling, self.scaling)
|
||||
|
||||
// We don't need to normalize rotation.
|
||||
|
||||
// Normalize translation.
|
||||
//
|
||||
// This is decidedly non-trivial because of the way that
|
||||
// scaling, rotation and translation combine. We need to
|
||||
// guarantee that the image _always_ fills the canvas
|
||||
// bounds. So want to clamp the translation such that the
|
||||
// image can be moved _exactly_ to the edge of the canvas
|
||||
// and no further in a way that reflects the current
|
||||
// crop, scaling and rotation.
|
||||
//
|
||||
// We need to clamp the translation to the valid "translation
|
||||
// region" which is a rectangle centered on the origin.
|
||||
// However, this rectangle is axis-aligned in canvas
|
||||
// coordinates, not view coordinates. e.g. if you have
|
||||
// a long image and a square output size, you could "slide"
|
||||
// the crop region along the image's contents. That
|
||||
// movement would appear diagonal to the user in the view
|
||||
// but would be vertical on the canvas.
|
||||
|
||||
// Normalize translation, Step 1:
|
||||
//
|
||||
// We project the viewport onto the canvas to determine
|
||||
// its bounding box.
|
||||
let viewBounds = CGRect(origin: .zero, size: self.outputSizePixels)
|
||||
// This "naive" transform represents the proposed transform
|
||||
// with no translation.
|
||||
let naiveTransform = ImageEditorTransform(outputSizePixels: outputSizePixels,
|
||||
unitTranslation: .zero,
|
||||
rotationRadians: rotationRadians,
|
||||
scaling: scaling,
|
||||
isFlipped: self.isFlipped)
|
||||
let naiveAffineTransform = naiveTransform.affineTransform(viewSize: viewBounds.size)
|
||||
var naiveViewportMinCanvas = CGPoint.zero
|
||||
var naiveViewportMaxCanvas = CGPoint.zero
|
||||
var isFirstCorner = true
|
||||
// Find the "naive" bounding box of the viewport on the canvas
|
||||
// by projecting its corners from view coordinates to canvas
|
||||
// coordinates.
|
||||
//
|
||||
// Due to symmetry, it should be sufficient to project 2 corners
|
||||
// but we do all four corners for safety.
|
||||
for viewCorner in [
|
||||
viewBounds.topLeft,
|
||||
viewBounds.topRight,
|
||||
viewBounds.bottomLeft,
|
||||
viewBounds.bottomRight
|
||||
] {
|
||||
let naiveViewCornerInCanvas = viewCorner.minus(viewBounds.center).applyingInverse(naiveAffineTransform).plus(viewBounds.center)
|
||||
if isFirstCorner {
|
||||
naiveViewportMinCanvas = naiveViewCornerInCanvas
|
||||
naiveViewportMaxCanvas = naiveViewCornerInCanvas
|
||||
isFirstCorner = false
|
||||
} else {
|
||||
naiveViewportMinCanvas = naiveViewportMinCanvas.min(naiveViewCornerInCanvas)
|
||||
naiveViewportMaxCanvas = naiveViewportMaxCanvas.max(naiveViewCornerInCanvas)
|
||||
}
|
||||
}
|
||||
let naiveViewportSizeCanvas: CGPoint = naiveViewportMaxCanvas.minus(naiveViewportMinCanvas)
|
||||
|
||||
// Normalize translation, Step 2:
|
||||
//
|
||||
// Now determine the "naive" image frame on the canvas.
|
||||
let naiveImageFrameCanvas = ImageEditorCanvasView.imageFrame(forViewSize: viewBounds.size, imageSize: srcImageSizePixels, transform: naiveTransform)
|
||||
let naiveImageSizeCanvas = CGPoint(x: naiveImageFrameCanvas.width, y: naiveImageFrameCanvas.height)
|
||||
|
||||
// Normalize translation, Step 3:
|
||||
//
|
||||
// The min/max translation can now by computed by diffing
|
||||
// the size of the bounding box of the naive viewport and
|
||||
// the size of the image on canvas.
|
||||
let maxTranslationCanvas = naiveImageSizeCanvas.minus(naiveViewportSizeCanvas).times(0.5).max(.zero)
|
||||
|
||||
// Normalize translation, Step 4:
|
||||
//
|
||||
// Clamp the proposed translation to the "max translation"
|
||||
// from the last step.
|
||||
//
|
||||
// This is subtle. We want to clamp in canvas coordinates
|
||||
// since the min/max translation is specified by a bounding
|
||||
// box in "unit canvas" coordinates. However, because the
|
||||
// translation is applied in SRT order (scale-rotate-transform),
|
||||
// it effectively operates in view coordinates since it is
|
||||
// applied last. So we project it from view coordinates
|
||||
// to canvas coordinates, clamp it, then project it back
|
||||
// into unit view coordinates using the "naive" (no translation)
|
||||
// transform.
|
||||
let translationInView = self.unitTranslation.fromUnitCoordinates(viewBounds: viewBounds)
|
||||
let translationInCanvas = translationInView.applyingInverse(naiveAffineTransform)
|
||||
// Clamp the translation to +/- maxTranslationCanvasUnit.
|
||||
let clampedTranslationInCanvas = translationInCanvas.min(maxTranslationCanvas).max(maxTranslationCanvas.inverse())
|
||||
let clampedTranslationInView = clampedTranslationInCanvas.applying(naiveAffineTransform)
|
||||
let unitTranslation = clampedTranslationInView.toUnitCoordinates(viewBounds: viewBounds, shouldClamp: false)
|
||||
|
||||
return ImageEditorTransform(outputSizePixels: outputSizePixels,
|
||||
unitTranslation: unitTranslation,
|
||||
rotationRadians: rotationRadians,
|
||||
scaling: scaling,
|
||||
isFlipped: self.isFlipped)
|
||||
}
|
||||
|
||||
public override func isEqual(_ object: Any?) -> Bool {
|
||||
guard let other = object as? ImageEditorTransform else {
|
||||
return false
|
||||
}
|
||||
return (outputSizePixels == other.outputSizePixels &&
|
||||
unitTranslation == other.unitTranslation &&
|
||||
rotationRadians == other.rotationRadians &&
|
||||
scaling == other.scaling &&
|
||||
isFlipped == other.isFlipped)
|
||||
}
|
||||
|
||||
public override var hash: Int {
|
||||
return (outputSizePixels.width.hashValue ^
|
||||
outputSizePixels.height.hashValue ^
|
||||
unitTranslation.x.hashValue ^
|
||||
unitTranslation.y.hashValue ^
|
||||
rotationRadians.hashValue ^
|
||||
scaling.hashValue ^
|
||||
isFlipped.hashValue)
|
||||
}
|
||||
|
||||
open override var description: String {
|
||||
return "[outputSizePixels: \(outputSizePixels), unitTranslation: \(unitTranslation), rotationRadians: \(rotationRadians), scaling: \(scaling), isFlipped: \(isFlipped)]"
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue