You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1785 lines
57 KiB
JavaScript
1785 lines
57 KiB
JavaScript
// Copyright 2018 Google Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the “License”);
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// <https://apache.org/licenses/LICENSE-2.0>.
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an “AS IS” BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
class JSBI extends Array {
|
|
constructor(length, sign) {
|
|
if (length > JSBI.__kMaxLength) {
|
|
throw new RangeError('Maximum BigInt size exceeded');
|
|
}
|
|
super(length);
|
|
this.sign = sign;
|
|
}
|
|
|
|
static BigInt(arg) {
|
|
if (typeof arg === 'number') {
|
|
if (arg === 0) return JSBI.__zero();
|
|
if ((arg | 0) === arg) {
|
|
if (arg < 0) {
|
|
return JSBI.__oneDigit(-arg, true);
|
|
}
|
|
return JSBI.__oneDigit(arg, false);
|
|
}
|
|
if (!Number.isFinite(arg) || Math.floor(arg) !== arg) {
|
|
throw new RangeError('The number ' + arg + ' cannot be converted to ' +
|
|
'BigInt because it is not an integer');
|
|
}
|
|
return JSBI.__fromDouble(arg);
|
|
} else if (typeof arg === 'string') {
|
|
const result = JSBI.__fromString(arg);
|
|
if (result === null) {
|
|
throw new SyntaxError('Cannot convert ' + arg + ' to a BigInt');
|
|
}
|
|
return result;
|
|
} else if (typeof arg === 'boolean') {
|
|
if (arg === true) {
|
|
return JSBI.__oneDigit(1, false);
|
|
}
|
|
return JSBI.__zero();
|
|
} else if (typeof arg === 'object') {
|
|
if (arg.constructor === JSBI) return arg;
|
|
const primitive = JSBI.__toPrimitive(arg);
|
|
return JSBI.BigInt(primitive);
|
|
}
|
|
throw new TypeError('Cannot convert ' + arg + ' to a BigInt');
|
|
}
|
|
|
|
toDebugString() {
|
|
const result = ['BigInt['];
|
|
for (const digit of this) {
|
|
result.push((digit ? (digit >>> 0).toString(16) : digit) + ', ');
|
|
}
|
|
result.push(']');
|
|
return result.join('');
|
|
}
|
|
|
|
toString(radix = 10) {
|
|
if (radix < 2 || radix > 36) {
|
|
throw new RangeError(
|
|
'toString() radix argument must be between 2 and 36');
|
|
}
|
|
if (this.length === 0) return '0';
|
|
if ((radix & (radix - 1)) === 0) {
|
|
return JSBI.__toStringBasePowerOfTwo(this, radix);
|
|
}
|
|
return JSBI.__toStringGeneric(this, radix, false);
|
|
}
|
|
|
|
// Equivalent of "Number(my_bigint)" in the native implementation.
|
|
static toNumber(x) {
|
|
const xLength = x.length;
|
|
if (xLength === 0) return 0;
|
|
if (xLength === 1) {
|
|
const value = x.__unsignedDigit(0);
|
|
return x.sign ? -value : value;
|
|
}
|
|
const xMsd = x.__digit(xLength - 1);
|
|
const msdLeadingZeros = Math.clz32(xMsd);
|
|
const xBitLength = xLength * 32 - msdLeadingZeros;
|
|
if (xBitLength > 1024) return x.sign ? -Infinity : Infinity;
|
|
let exponent = xBitLength - 1;
|
|
let currentDigit = xMsd;
|
|
let digitIndex = xLength - 1;
|
|
const shift = msdLeadingZeros + 1;
|
|
let mantissaHigh = (shift === 32) ? 0 : currentDigit << shift;
|
|
mantissaHigh >>>= 12;
|
|
const mantissaHighBitsUnset = shift - 12;
|
|
let mantissaLow = (shift >= 12) ? 0 : (currentDigit << (20 + shift));
|
|
let mantissaLowBitsUnset = 20 + shift;
|
|
if (mantissaHighBitsUnset > 0 && digitIndex > 0) {
|
|
digitIndex--;
|
|
currentDigit = x.__digit(digitIndex);
|
|
mantissaHigh |= (currentDigit >>> (32 - mantissaHighBitsUnset));
|
|
mantissaLow = currentDigit << mantissaHighBitsUnset;
|
|
mantissaLowBitsUnset = mantissaHighBitsUnset;
|
|
}
|
|
if (mantissaLowBitsUnset > 0 && digitIndex > 0) {
|
|
digitIndex--;
|
|
currentDigit = x.__digit(digitIndex);
|
|
mantissaLow |= (currentDigit >>> (32 - mantissaLowBitsUnset));
|
|
mantissaLowBitsUnset -= 32;
|
|
}
|
|
const rounding = JSBI.__decideRounding(x, mantissaLowBitsUnset,
|
|
digitIndex, currentDigit);
|
|
if (rounding === 1 || (rounding === 0 && (mantissaLow & 1) === 1)) {
|
|
mantissaLow = (mantissaLow + 1) >>> 0;
|
|
if (mantissaLow === 0) {
|
|
// Incrementing mantissaLow overflowed.
|
|
mantissaHigh++;
|
|
if ((mantissaHigh >>> 20) !== 0) {
|
|
// Incrementing mantissaHigh overflowed.
|
|
mantissaHigh = 0;
|
|
exponent++;
|
|
if (exponent > 1023) {
|
|
// Incrementing the exponent overflowed.
|
|
return x.sign ? -Infinity : Infinity;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const signBit = x.sign ? (1 << 31) : 0;
|
|
exponent = (exponent + 0x3FF) << 20;
|
|
JSBI.__kBitConversionInts[1] = signBit | exponent | mantissaHigh;
|
|
JSBI.__kBitConversionInts[0] = mantissaLow;
|
|
return JSBI.__kBitConversionDouble[0];
|
|
}
|
|
|
|
// Operations.
|
|
|
|
static unaryMinus(x) {
|
|
if (x.length === 0) return x;
|
|
const result = x.__copy();
|
|
result.sign = !x.sign;
|
|
return result;
|
|
}
|
|
|
|
static bitwiseNot(x) {
|
|
if (x.sign) {
|
|
// ~(-x) == ~(~(x-1)) == x-1
|
|
return JSBI.__absoluteSubOne(x).__trim();
|
|
}
|
|
// ~x == -x-1 == -(x+1)
|
|
return JSBI.__absoluteAddOne(x, true);
|
|
}
|
|
|
|
static exponentiate(x, y) {
|
|
if (y.sign) {
|
|
throw new RangeError('Exponent must be positive');
|
|
}
|
|
if (y.length === 0) {
|
|
return JSBI.__oneDigit(1, false);
|
|
}
|
|
if (x.length === 0) return x;
|
|
if (x.length === 1 && x.__digit(0) === 1) {
|
|
// (-1) ** even_number == 1.
|
|
if (x.sign && (y.__digit(0) & 1) === 0) {
|
|
return JSBI.unaryMinus(x);
|
|
}
|
|
// (-1) ** odd_number == -1, 1 ** anything == 1.
|
|
return x;
|
|
}
|
|
// For all bases >= 2, very large exponents would lead to unrepresentable
|
|
// results.
|
|
if (y.length > 1) throw new RangeError('BigInt too big');
|
|
let expValue = y.__unsignedDigit(0);
|
|
if (expValue === 1) return x;
|
|
if (expValue >= JSBI.__kMaxLengthBits) {
|
|
throw new RangeError('BigInt too big');
|
|
}
|
|
if (x.length === 1 && x.__digit(0) === 2) {
|
|
// Fast path for 2^n.
|
|
const neededDigits = 1 + (expValue >>> 5);
|
|
const sign = x.sign && ((expValue & 1) !== 0);
|
|
const result = new JSBI(neededDigits, sign);
|
|
result.__initializeDigits();
|
|
// All bits are zero. Now set the n-th bit.
|
|
const msd = 1 << (expValue & 31);
|
|
result.__setDigit(neededDigits - 1, msd);
|
|
return result;
|
|
}
|
|
let result = null;
|
|
let runningSquare = x;
|
|
// This implicitly sets the result's sign correctly.
|
|
if ((expValue & 1) !== 0) result = x;
|
|
expValue >>= 1;
|
|
for (; expValue !== 0; expValue >>= 1) {
|
|
runningSquare = JSBI.multiply(runningSquare, runningSquare);
|
|
if ((expValue & 1) !== 0) {
|
|
if (result === null) {
|
|
result = runningSquare;
|
|
} else {
|
|
result = JSBI.multiply(result, runningSquare);
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static multiply(x, y) {
|
|
if (x.length === 0) return x;
|
|
if (y.length === 0) return y;
|
|
let resultLength = x.length + y.length;
|
|
if (x.__clzmsd() + y.__clzmsd() >= 32) {
|
|
resultLength--;
|
|
}
|
|
const result = new JSBI(resultLength, x.sign !== y.sign);
|
|
result.__initializeDigits();
|
|
for (let i = 0; i < x.length; i++) {
|
|
JSBI.__multiplyAccumulate(y, x.__digit(i), result, i);
|
|
}
|
|
return result.__trim();
|
|
}
|
|
|
|
static divide(x, y) {
|
|
if (y.length === 0) throw new RangeError('Division by zero');
|
|
if (JSBI.__absoluteCompare(x, y) < 0) return JSBI.__zero();
|
|
const resultSign = x.sign !== y.sign;
|
|
const divisor = y.__unsignedDigit(0);
|
|
let quotient;
|
|
if (y.length === 1 && divisor <= 0xFFFF) {
|
|
if (divisor === 1) {
|
|
return resultSign === x.sign ? x : JSBI.unaryMinus(x);
|
|
}
|
|
quotient = JSBI.__absoluteDivSmall(x, divisor, null);
|
|
} else {
|
|
quotient = JSBI.__absoluteDivLarge(x, y, true, false);
|
|
}
|
|
quotient.sign = resultSign;
|
|
return quotient.__trim();
|
|
}
|
|
|
|
static remainder(x, y) {
|
|
if (y.length === 0) throw new RangeError('Division by zero');
|
|
if (JSBI.__absoluteCompare(x, y) < 0) return x;
|
|
const divisor = y.__unsignedDigit(0);
|
|
if (y.length === 1 && divisor <= 0xFFFF) {
|
|
if (divisor === 1) return JSBI.__zero();
|
|
const remainderDigit = JSBI.__absoluteModSmall(x, divisor);
|
|
if (remainderDigit === 0) return JSBI.__zero();
|
|
return JSBI.__oneDigit(remainderDigit, x.sign);
|
|
}
|
|
const remainder = JSBI.__absoluteDivLarge(x, y, false, true);
|
|
remainder.sign = x.sign;
|
|
return remainder.__trim();
|
|
}
|
|
|
|
static add(x, y) {
|
|
const sign = x.sign;
|
|
if (sign === y.sign) {
|
|
// x + y == x + y
|
|
// -x + -y == -(x + y)
|
|
return JSBI.__absoluteAdd(x, y, sign);
|
|
}
|
|
// x + -y == x - y == -(y - x)
|
|
// -x + y == y - x == -(x - y)
|
|
if (JSBI.__absoluteCompare(x, y) >= 0) {
|
|
return JSBI.__absoluteSub(x, y, sign);
|
|
}
|
|
return JSBI.__absoluteSub(y, x, !sign);
|
|
}
|
|
|
|
static subtract(x, y) {
|
|
const sign = x.sign;
|
|
if (sign !== y.sign) {
|
|
// x - (-y) == x + y
|
|
// (-x) - y == -(x + y)
|
|
return JSBI.__absoluteAdd(x, y, sign);
|
|
}
|
|
// x - y == -(y - x)
|
|
// (-x) - (-y) == y - x == -(x - y)
|
|
if (JSBI.__absoluteCompare(x, y) >= 0) {
|
|
return JSBI.__absoluteSub(x, y, sign);
|
|
}
|
|
return JSBI.__absoluteSub(y, x, !sign);
|
|
}
|
|
|
|
static leftShift(x, y) {
|
|
if (y.length === 0 || x.length === 0) return x;
|
|
if (y.sign) return JSBI.__rightShiftByAbsolute(x, y);
|
|
return JSBI.__leftShiftByAbsolute(x, y);
|
|
}
|
|
|
|
static signedRightShift(x, y) {
|
|
if (y.length === 0 || x.length === 0) return x;
|
|
if (y.sign) return JSBI.__leftShiftByAbsolute(x, y);
|
|
return JSBI.__rightShiftByAbsolute(x, y);
|
|
}
|
|
|
|
static unsignedRightShift() {
|
|
throw new TypeError(
|
|
'BigInts have no unsigned right shift; use >> instead');
|
|
}
|
|
|
|
static lessThan(x, y) {
|
|
return JSBI.__compareToBigInt(x, y) < 0;
|
|
}
|
|
|
|
static lessThanOrEqual(x, y) {
|
|
return JSBI.__compareToBigInt(x, y) <= 0;
|
|
}
|
|
|
|
static greaterThan(x, y) {
|
|
return JSBI.__compareToBigInt(x, y) > 0;
|
|
}
|
|
|
|
static greaterThanOrEqual(x, y) {
|
|
return JSBI.__compareToBigInt(x, y) >= 0;
|
|
}
|
|
|
|
static equal(x, y) {
|
|
if (x.sign !== y.sign) return false;
|
|
if (x.length !== y.length) return false;
|
|
for (let i = 0; i < x.length; i++) {
|
|
if (x.__digit(i) !== y.__digit(i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bitwiseAnd(x, y) {
|
|
if (!x.sign && !y.sign) {
|
|
return JSBI.__absoluteAnd(x, y).__trim();
|
|
} else if (x.sign && y.sign) {
|
|
const resultLength = Math.max(x.length, y.length) + 1;
|
|
// (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1))
|
|
// == -(((x-1) | (y-1)) + 1)
|
|
let result = JSBI.__absoluteSubOne(x, resultLength);
|
|
const y1 = JSBI.__absoluteSubOne(y);
|
|
result = JSBI.__absoluteOr(result, y1, result);
|
|
return JSBI.__absoluteAddOne(result, true, result).__trim();
|
|
}
|
|
// Assume that x is the positive BigInt.
|
|
if (x.sign) {
|
|
[x, y] = [y, x];
|
|
}
|
|
// x & (-y) == x & ~(y-1) == x &~ (y-1)
|
|
return JSBI.__absoluteAndNot(x, JSBI.__absoluteSubOne(y)).__trim();
|
|
}
|
|
|
|
static bitwiseXor(x, y) {
|
|
if (!x.sign && !y.sign) {
|
|
return JSBI.__absoluteXor(x, y).__trim();
|
|
} else if (x.sign && y.sign) {
|
|
// (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1)
|
|
const resultLength = Math.max(x.length, y.length);
|
|
const result = JSBI.__absoluteSubOne(x, resultLength);
|
|
const y1 = JSBI.__absoluteSubOne(y);
|
|
return JSBI.__absoluteXor(result, y1, result).__trim();
|
|
}
|
|
const resultLength = Math.max(x.length, y.length) + 1;
|
|
// Assume that x is the positive BigInt.
|
|
if (x.sign) {
|
|
[x, y] = [y, x];
|
|
}
|
|
// x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1)
|
|
let result = JSBI.__absoluteSubOne(y, resultLength);
|
|
result = JSBI.__absoluteXor(result, x, result);
|
|
return JSBI.__absoluteAddOne(result, true, result).__trim();
|
|
}
|
|
|
|
static bitwiseOr(x, y) {
|
|
const resultLength = Math.max(x.length, y.length);
|
|
if (!x.sign && !y.sign) {
|
|
return JSBI.__absoluteOr(x, y).__trim();
|
|
} else if (x.sign && y.sign) {
|
|
// (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1))
|
|
// == -(((x-1) & (y-1)) + 1)
|
|
let result = JSBI.__absoluteSubOne(x, resultLength);
|
|
const y1 = JSBI.__absoluteSubOne(y);
|
|
result = JSBI.__absoluteAnd(result, y1, result);
|
|
return JSBI.__absoluteAddOne(result, true, result).__trim();
|
|
}
|
|
// Assume that x is the positive BigInt.
|
|
if (x.sign) {
|
|
[x, y] = [y, x];
|
|
}
|
|
// x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) ~& x) + 1)
|
|
let result = JSBI.__absoluteSubOne(y, resultLength);
|
|
result = JSBI.__absoluteAndNot(result, x, result);
|
|
return JSBI.__absoluteAddOne(result, true, result).__trim();
|
|
}
|
|
|
|
// Operators.
|
|
|
|
static ADD(x, y) {
|
|
x = JSBI.__toPrimitive(x);
|
|
y = JSBI.__toPrimitive(y);
|
|
if (typeof x === 'string') {
|
|
if (typeof y !== 'string') y = y.toString();
|
|
return x + y;
|
|
}
|
|
if (typeof y === 'string') {
|
|
return x.toString() + y;
|
|
}
|
|
x = JSBI.__toNumeric(x);
|
|
y = JSBI.__toNumeric(y);
|
|
if (JSBI.__isBigInt(x) && JSBI.__isBigInt(y)) {
|
|
return JSBI.add(x, y);
|
|
}
|
|
if (typeof x === 'number' && typeof y === 'number') {
|
|
return x + y;
|
|
}
|
|
throw new TypeError(
|
|
'Cannot mix BigInt and other types, use explicit conversions');
|
|
}
|
|
|
|
static LT(x, y) {
|
|
return JSBI.__compare(x, y, 0);
|
|
}
|
|
static LE(x, y) {
|
|
return JSBI.__compare(x, y, 1);
|
|
}
|
|
static GT(x, y) {
|
|
return JSBI.__compare(x, y, 2);
|
|
}
|
|
static GE(x, y) {
|
|
return JSBI.__compare(x, y, 3);
|
|
}
|
|
|
|
static EQ(x, y) {
|
|
while (true) {
|
|
if (JSBI.__isBigInt(x)) {
|
|
if (JSBI.__isBigInt(y)) return JSBI.equal(x, y);
|
|
return JSBI.EQ(y, x);
|
|
} else if (typeof x === 'number') {
|
|
if (JSBI.__isBigInt(y)) return JSBI.__equalToNumber(y, x);
|
|
if (typeof y !== 'object') return x == y;
|
|
y = JSBI.__toPrimitive(y);
|
|
} else if (typeof x === 'string') {
|
|
if (JSBI.__isBigInt(y)) {
|
|
x = JSBI.__fromString(x);
|
|
if (x === null) return false;
|
|
return JSBI.equal(x, y);
|
|
}
|
|
if (typeof y !== 'object') return x == y;
|
|
y = JSBI.__toPrimitive(y);
|
|
} else if (typeof x === 'boolean') {
|
|
if (JSBI.__isBigInt(y)) return JSBI.__equalToNumber(y, +x);
|
|
if (typeof y !== 'object') return x == y;
|
|
y = JSBI.__toPrimitive(y);
|
|
} else if (typeof x === 'symbol') {
|
|
if (JSBI.__isBigInt(y)) return false;
|
|
if (typeof y !== 'object') return x == y;
|
|
y = JSBI.__toPrimitive(y);
|
|
} else if (typeof x === 'object') {
|
|
if (typeof y === 'object' && y.constructor !== JSBI) return x == y;
|
|
x = JSBI.__toPrimitive(x);
|
|
} else {
|
|
return x == y;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helpers.
|
|
|
|
static __zero() {
|
|
return new JSBI(0, false);
|
|
}
|
|
|
|
static __oneDigit(value, sign) {
|
|
const result = new JSBI(1, sign);
|
|
result.__setDigit(0, value);
|
|
return result;
|
|
}
|
|
|
|
__copy() {
|
|
const result = new JSBI(this.length, this.sign);
|
|
for (let i = 0; i < this.length; i++) {
|
|
result[i] = this[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
__trim() {
|
|
let newLength = this.length;
|
|
let last = this[newLength - 1];
|
|
while (last === 0) {
|
|
newLength--;
|
|
last = this[newLength - 1];
|
|
this.pop();
|
|
}
|
|
if (newLength === 0) this.sign = false;
|
|
return this;
|
|
}
|
|
|
|
__initializeDigits() {
|
|
for (let i = 0; i < this.length; i++) {
|
|
this[i] = 0;
|
|
}
|
|
}
|
|
|
|
static __decideRounding(x, mantissaBitsUnset, digitIndex, currentDigit) {
|
|
if (mantissaBitsUnset > 0) return -1;
|
|
let topUnconsumedBit;
|
|
if (mantissaBitsUnset < 0) {
|
|
topUnconsumedBit = -mantissaBitsUnset - 1;
|
|
} else {
|
|
// {currentDigit} fit the mantissa exactly; look at the next digit.
|
|
if (digitIndex === 0) return -1;
|
|
digitIndex--;
|
|
currentDigit = x.__digit(digitIndex);
|
|
topUnconsumedBit = 31;
|
|
}
|
|
// If the most significant remaining bit is 0, round down.
|
|
let mask = 1 << topUnconsumedBit;
|
|
if ((currentDigit & mask) === 0) return -1;
|
|
// If any other remaining bit is set, round up.
|
|
mask -= 1;
|
|
if ((currentDigit & mask) !== 0) return 1;
|
|
while (digitIndex > 0) {
|
|
digitIndex--;
|
|
if (x.__digit(digitIndex) !== 0) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __fromDouble(value) {
|
|
const sign = value < 0;
|
|
JSBI.__kBitConversionDouble[0] = value;
|
|
const rawExponent = (JSBI.__kBitConversionInts[1] >>> 20) & 0x7FF;
|
|
const exponent = rawExponent - 0x3FF;
|
|
const digits = (exponent >>> 5) + 1;
|
|
const result = new JSBI(digits, sign);
|
|
const kHiddenBit = 0x00100000;
|
|
let mantissaHigh = (JSBI.__kBitConversionInts[1] & 0xFFFFF) | kHiddenBit;
|
|
let mantissaLow = JSBI.__kBitConversionInts[0];
|
|
const kMantissaHighTopBit = 20;
|
|
// 0-indexed position of most significant bit in most significant digit.
|
|
const msdTopBit = exponent & 31;
|
|
// Number of unused bits in the mantissa. We'll keep them shifted to the
|
|
// left (i.e. most significant part).
|
|
let remainingMantissaBits = 0;
|
|
// Next digit under construction.
|
|
let digit;
|
|
// First, build the MSD by shifting the mantissa appropriately.
|
|
if (msdTopBit < kMantissaHighTopBit) {
|
|
const shift = kMantissaHighTopBit - msdTopBit;
|
|
remainingMantissaBits = shift + 32;
|
|
digit = mantissaHigh >>> shift;
|
|
mantissaHigh = (mantissaHigh << (32 - shift)) |
|
|
(mantissaLow >>> shift);
|
|
mantissaLow = mantissaLow << (32 - shift);
|
|
} else if (msdTopBit === kMantissaHighTopBit) {
|
|
remainingMantissaBits = 32;
|
|
digit = mantissaHigh;
|
|
mantissaHigh = mantissaLow;
|
|
} else {
|
|
const shift = msdTopBit - kMantissaHighTopBit;
|
|
remainingMantissaBits = 32 - shift;
|
|
digit = (mantissaHigh << shift) | (mantissaLow >>> (32 - shift));
|
|
mantissaHigh = mantissaLow << shift;
|
|
}
|
|
result.__setDigit(digits - 1, digit);
|
|
// Then fill in the rest of the digits.
|
|
for (let digitIndex = digits - 2; digitIndex >= 0; digitIndex--) {
|
|
if (remainingMantissaBits > 0) {
|
|
remainingMantissaBits -= 32;
|
|
digit = mantissaHigh;
|
|
mantissaHigh = mantissaLow;
|
|
} else {
|
|
digit = 0;
|
|
}
|
|
result.__setDigit(digitIndex, digit);
|
|
}
|
|
return result.__trim();
|
|
}
|
|
|
|
static __isWhitespace(c) {
|
|
if (c <= 0x0D && c >= 0x09) return true;
|
|
if (c <= 0x9F) return c === 0x20;
|
|
if (c <= 0x01FFFF) {
|
|
return c === 0xA0 || c === 0x1680;
|
|
}
|
|
if (c <= 0x02FFFF) {
|
|
c &= 0x01FFFF;
|
|
return c <= 0x0A || c === 0x28 || c === 0x29 || c === 0x2F ||
|
|
c === 0x5F || c === 0x1000;
|
|
}
|
|
return c === 0xFEFF;
|
|
}
|
|
|
|
static __fromString(string, radix = 0) {
|
|
let sign = 0;
|
|
let leadingZero = false;
|
|
const length = string.length;
|
|
let cursor = 0;
|
|
if (cursor === length) return JSBI.__zero();
|
|
let current = string.charCodeAt(cursor);
|
|
// Skip whitespace.
|
|
while (JSBI.__isWhitespace(current)) {
|
|
if (++cursor === length) return JSBI.__zero();
|
|
current = string.charCodeAt(cursor);
|
|
}
|
|
|
|
// Detect radix.
|
|
if (current === 0x2B) { // '+'
|
|
if (++cursor === length) return null;
|
|
current = string.charCodeAt(cursor);
|
|
sign = 1;
|
|
} else if (current === 0x2D) { // '-'
|
|
if (++cursor === length) return null;
|
|
current = string.charCodeAt(cursor);
|
|
sign = -1;
|
|
}
|
|
|
|
if (radix === 0) {
|
|
radix = 10;
|
|
if (current === 0x30) { // '0'
|
|
if (++cursor === length) return JSBI.__zero();
|
|
current = string.charCodeAt(cursor);
|
|
if (current === 0x58 || current === 0x78) { // 'X' or 'x'
|
|
radix = 16;
|
|
if (++cursor === length) return null;
|
|
current = string.charCodeAt(cursor);
|
|
} else if (current === 0x4F || current === 0x6F) { // 'O' or 'o'
|
|
radix = 8;
|
|
if (++cursor === length) return null;
|
|
current = string.charCodeAt(cursor);
|
|
} else if (current === 0x42 || current === 0x62) { // 'B' or 'b'
|
|
radix = 2;
|
|
if (++cursor === length) return null;
|
|
current = string.charCodeAt(cursor);
|
|
} else {
|
|
leadingZero = true;
|
|
}
|
|
}
|
|
} else if (radix === 16) {
|
|
if (current === 0x30) { // '0'
|
|
// Allow "0x" prefix.
|
|
if (++cursor === length) return JSBI.__zero();
|
|
current = string.charCodeAt(cursor);
|
|
if (current === 0x58 || current === 0x78) { // 'X' or 'x'
|
|
if (++cursor === length) return null;
|
|
current = string.charCodeAt(cursor);
|
|
} else {
|
|
leadingZero = true;
|
|
}
|
|
}
|
|
}
|
|
// Skip leading zeros.
|
|
while (current === 0x30) {
|
|
leadingZero = true;
|
|
if (++cursor === length) return JSBI.__zero();
|
|
current = string.charCodeAt(cursor);
|
|
}
|
|
|
|
// Allocate result.
|
|
const chars = length - cursor;
|
|
let bitsPerChar = JSBI.__kMaxBitsPerChar[radix];
|
|
let roundup = JSBI.__kBitsPerCharTableMultiplier - 1;
|
|
if (chars > (1 << 30) / bitsPerChar) return null;
|
|
const bitsMin =
|
|
(bitsPerChar * chars + roundup) >>> JSBI.__kBitsPerCharTableShift;
|
|
const resultLength = (bitsMin + 31) >>> 5;
|
|
const result = new JSBI(resultLength, false);
|
|
|
|
// Parse.
|
|
const limDigit = radix < 10 ? radix : 10;
|
|
const limAlpha = radix > 10 ? radix - 10 : 0;
|
|
|
|
if ((radix & (radix - 1)) === 0) {
|
|
// Power-of-two radix.
|
|
bitsPerChar >>= JSBI.__kBitsPerCharTableShift;
|
|
const parts = [];
|
|
const partsBits = [];
|
|
let done = false;
|
|
do {
|
|
let part = 0;
|
|
let bits = 0;
|
|
while (true) {
|
|
let d;
|
|
if (((current - 48) >>> 0) < limDigit) {
|
|
d = current - 48;
|
|
} else if ((((current | 32) - 97) >>> 0) < limAlpha) {
|
|
d = (current | 32) - 87;
|
|
} else {
|
|
done = true;
|
|
break;
|
|
}
|
|
bits += bitsPerChar;
|
|
part = (part << bitsPerChar) | d;
|
|
if (++cursor === length) {
|
|
done = true;
|
|
break;
|
|
}
|
|
current = string.charCodeAt(cursor);
|
|
if (bits + bitsPerChar > 32) break;
|
|
}
|
|
parts.push(part);
|
|
partsBits.push(bits);
|
|
} while (!done);
|
|
JSBI.__fillFromParts(result, parts, partsBits);
|
|
} else {
|
|
result.__initializeDigits();
|
|
let done = false;
|
|
let charsSoFar = 0;
|
|
do {
|
|
let part = 0;
|
|
let multiplier = 1;
|
|
while (true) {
|
|
let d;
|
|
if (((current - 48) >>> 0) < limDigit) {
|
|
d = current - 48;
|
|
} else if ((((current | 32) - 97) >>> 0) < limAlpha) {
|
|
d = (current | 32) - 87;
|
|
} else {
|
|
done = true;
|
|
break;
|
|
}
|
|
|
|
const m = multiplier * radix;
|
|
if (m > 0xFFFFFFFF) break;
|
|
multiplier = m;
|
|
part = part * radix + d;
|
|
charsSoFar++;
|
|
if (++cursor === length) {
|
|
done = true;
|
|
break;
|
|
}
|
|
current = string.charCodeAt(cursor);
|
|
}
|
|
roundup = JSBI.__kBitsPerCharTableMultiplier * 32 - 1;
|
|
const digitsSoFar = (bitsPerChar * charsSoFar + roundup) >>>
|
|
(JSBI.__kBitsPerCharTableShift + 5);
|
|
result.__inplaceMultiplyAdd(multiplier, part, digitsSoFar);
|
|
} while (!done);
|
|
}
|
|
|
|
while (cursor !== length) {
|
|
if (!JSBI.__isWhitespace(current)) return null;
|
|
current = string.charCodeAt(cursor++);
|
|
}
|
|
|
|
// Get result.
|
|
if (sign !== 0 && radix !== 10) return null;
|
|
result.sign = (sign === -1);
|
|
return result.__trim();
|
|
}
|
|
|
|
static __fillFromParts(result, parts, partsBits) {
|
|
let digitIndex = 0;
|
|
let digit = 0;
|
|
let bitsInDigit = 0;
|
|
for (let i = parts.length - 1; i >= 0; i--) {
|
|
const part = parts[i];
|
|
const partBits = partsBits[i];
|
|
digit |= (part << bitsInDigit);
|
|
bitsInDigit += partBits;
|
|
if (bitsInDigit === 32) {
|
|
result.__setDigit(digitIndex++, digit);
|
|
bitsInDigit = 0;
|
|
digit = 0;
|
|
} else if (bitsInDigit > 32) {
|
|
result.__setDigit(digitIndex++, digit);
|
|
bitsInDigit -= 32;
|
|
digit = part >>> (partBits - bitsInDigit);
|
|
}
|
|
}
|
|
if (digit !== 0) {
|
|
if (digitIndex >= result.length) throw new Error('implementation bug');
|
|
result.__setDigit(digitIndex++, digit);
|
|
}
|
|
for (; digitIndex < result.length; digitIndex++) {
|
|
result.__setDigit(digitIndex, 0);
|
|
}
|
|
}
|
|
|
|
static __toStringBasePowerOfTwo(x, radix) {
|
|
const length = x.length;
|
|
let bits = radix - 1;
|
|
bits = ((bits >>> 1) & 0x55) + (bits & 0x55);
|
|
bits = ((bits >>> 2) & 0x33) + (bits & 0x33);
|
|
bits = ((bits >>> 4) & 0x0F) + (bits & 0x0F);
|
|
const bitsPerChar = bits;
|
|
const charMask = radix - 1;
|
|
const msd = x.__digit(length - 1);
|
|
const msdLeadingZeros = Math.clz32(msd);
|
|
const bitLength = length * 32 - msdLeadingZeros;
|
|
let charsRequired =
|
|
((bitLength + bitsPerChar - 1) / bitsPerChar) | 0;
|
|
if (x.sign) charsRequired++;
|
|
if (charsRequired > (1 << 28)) throw new Error('string too long');
|
|
const result = new Array(charsRequired);
|
|
let pos = charsRequired - 1;
|
|
let digit = 0;
|
|
let availableBits = 0;
|
|
for (let i = 0; i < length - 1; i++) {
|
|
const newDigit = x.__digit(i);
|
|
const current = (digit | (newDigit << availableBits)) & charMask;
|
|
result[pos--] = JSBI.__kConversionChars[current];
|
|
const consumedBits = bitsPerChar - availableBits;
|
|
digit = newDigit >>> consumedBits;
|
|
availableBits = 32 - consumedBits;
|
|
while (availableBits >= bitsPerChar) {
|
|
result[pos--] = JSBI.__kConversionChars[digit & charMask];
|
|
digit >>>= bitsPerChar;
|
|
availableBits -= bitsPerChar;
|
|
}
|
|
}
|
|
const current = (digit | (msd << availableBits)) & charMask;
|
|
result[pos--] = JSBI.__kConversionChars[current];
|
|
digit = msd >>> (bitsPerChar - availableBits);
|
|
while (digit !== 0) {
|
|
result[pos--] = JSBI.__kConversionChars[digit & charMask];
|
|
digit >>>= bitsPerChar;
|
|
}
|
|
if (x.sign) result[pos--] = '-';
|
|
if (pos !== -1) throw new Error('implementation bug');
|
|
return result.join('');
|
|
}
|
|
|
|
static __toStringGeneric(x, radix, isRecursiveCall) {
|
|
const length = x.length;
|
|
if (length === 0) return '';
|
|
if (length === 1) {
|
|
let result = x.__unsignedDigit(0).toString(radix);
|
|
if (isRecursiveCall === false && x.sign) {
|
|
result = '-' + result;
|
|
}
|
|
return result;
|
|
}
|
|
const bitLength = length * 32 - Math.clz32(x.__digit(length - 1));
|
|
const maxBitsPerChar = JSBI.__kMaxBitsPerChar[radix];
|
|
const minBitsPerChar = maxBitsPerChar - 1;
|
|
let charsRequired = bitLength * JSBI.__kBitsPerCharTableMultiplier;
|
|
charsRequired += minBitsPerChar - 1;
|
|
charsRequired = (charsRequired / minBitsPerChar) | 0;
|
|
const secondHalfChars = (charsRequired + 1) >> 1;
|
|
// Divide-and-conquer: split by a power of {radix} that's approximately
|
|
// the square root of {x}, then recurse.
|
|
const conqueror = JSBI.exponentiate(JSBI.__oneDigit(radix, false),
|
|
JSBI.__oneDigit(secondHalfChars, false));
|
|
let quotient;
|
|
let secondHalf;
|
|
const divisor = conqueror.__unsignedDigit(0);
|
|
if (conqueror.length === 1 && divisor <= 0xFFFF) {
|
|
quotient = new JSBI(x.length, false);
|
|
quotient.__initializeDigits();
|
|
let remainder = 0;
|
|
for (let i = x.length * 2 - 1; i >= 0; i--) {
|
|
const input = (remainder << 16) | x.__halfDigit(i);
|
|
quotient.__setHalfDigit(i, (input / divisor) | 0);
|
|
remainder = (input % divisor) | 0;
|
|
}
|
|
secondHalf = remainder.toString(radix);
|
|
} else {
|
|
const divisionResult = JSBI.__absoluteDivLarge(x, conqueror, true, true);
|
|
quotient = divisionResult.quotient;
|
|
const remainder = divisionResult.remainder.__trim();
|
|
secondHalf = JSBI.__toStringGeneric(remainder, radix, true);
|
|
}
|
|
quotient.__trim();
|
|
let firstHalf = JSBI.__toStringGeneric(quotient, radix, true);
|
|
while (secondHalf.length < secondHalfChars) {
|
|
secondHalf = '0' + secondHalf;
|
|
}
|
|
if (isRecursiveCall === false && x.sign) {
|
|
firstHalf = '-' + firstHalf;
|
|
}
|
|
return firstHalf + secondHalf;
|
|
}
|
|
|
|
static __unequalSign(leftNegative) {
|
|
return leftNegative ? -1 : 1;
|
|
}
|
|
static __absoluteGreater(bothNegative) {
|
|
return bothNegative ? -1 : 1;
|
|
}
|
|
static __absoluteLess(bothNegative) {
|
|
return bothNegative ? 1 : -1;
|
|
}
|
|
|
|
static __compareToBigInt(x, y) {
|
|
const xSign = x.sign;
|
|
if (xSign !== y.sign) return JSBI.__unequalSign(xSign);
|
|
const result = JSBI.__absoluteCompare(x, y);
|
|
if (result > 0) return JSBI.__absoluteGreater(xSign);
|
|
if (result < 0) return JSBI.__absoluteLess(xSign);
|
|
return 0;
|
|
}
|
|
|
|
static __compareToNumber(x, y) {
|
|
if (y | 0 === 0) {
|
|
const xSign = x.sign;
|
|
const ySign = (y < 0);
|
|
if (xSign !== ySign) return JSBI.__unequalSign(xSign);
|
|
if (x.length === 0) {
|
|
if (ySign) throw new Error('implementation bug');
|
|
return y === 0 ? 0 : -1;
|
|
}
|
|
// Any multi-digit BigInt is bigger than an int32.
|
|
if (x.length > 1) return JSBI.__absoluteGreater(xSign);
|
|
const yAbs = Math.abs(y);
|
|
const xDigit = x.__unsignedDigit(0);
|
|
if (xDigit > yAbs) return JSBI.__absoluteGreater(xSign);
|
|
if (xDigit < yAbs) return JSBI.__absoluteLess(xSign);
|
|
return 0;
|
|
}
|
|
return JSBI.__compareToDouble(x, y);
|
|
}
|
|
|
|
static __compareToDouble(x, y) {
|
|
if (y !== y) return y; // NaN.
|
|
if (y === Infinity) return -1;
|
|
if (y === -Infinity) return 1;
|
|
const xSign = x.sign;
|
|
const ySign = (y < 0);
|
|
if (xSign !== ySign) return JSBI.__unequalSign(xSign);
|
|
if (y === 0) {
|
|
throw new Error('implementation bug: should be handled elsewhere');
|
|
}
|
|
if (x.length === 0) return -1;
|
|
JSBI.__kBitConversionDouble[0] = y;
|
|
const rawExponent = (JSBI.__kBitConversionInts[1] >>> 20) & 0x7FF;
|
|
if (rawExponent === 0x7FF) {
|
|
throw new Error('implementation bug: handled elsewhere');
|
|
}
|
|
const exponent = rawExponent - 0x3FF;
|
|
if (exponent < 0) {
|
|
// The absolute value of y is less than 1. Only 0n has an absolute
|
|
// value smaller than that, but we've already covered that case.
|
|
return JSBI.__absoluteGreater(xSign);
|
|
}
|
|
const xLength = x.length;
|
|
let xMsd = x.__digit(xLength - 1);
|
|
const msdLeadingZeros = Math.clz32(xMsd);
|
|
const xBitLength = xLength * 32 - msdLeadingZeros;
|
|
const yBitLength = exponent + 1;
|
|
if (xBitLength < yBitLength) return JSBI.__absoluteLess(xSign);
|
|
if (xBitLength > yBitLength) return JSBI.__absoluteGreater(xSign);
|
|
// Same sign, same bit length. Shift mantissa to align with x and compare
|
|
// bit for bit.
|
|
const kHiddenBit = 0x00100000;
|
|
let mantissaHigh = (JSBI.__kBitConversionInts[1] & 0xFFFFF) | kHiddenBit;
|
|
let mantissaLow = JSBI.__kBitConversionInts[0];
|
|
const kMantissaHighTopBit = 20;
|
|
const msdTopBit = 31 - msdLeadingZeros;
|
|
if (msdTopBit !== ((xBitLength - 1) % 31)) {
|
|
throw new Error('implementation bug');
|
|
}
|
|
let compareMantissa; // Shifted chunk of mantissa.
|
|
let remainingMantissaBits = 0;
|
|
// First, compare most significant digit against beginning of mantissa.
|
|
if (msdTopBit < kMantissaHighTopBit) {
|
|
const shift = kMantissaHighTopBit - msdTopBit;
|
|
remainingMantissaBits = shift + 32;
|
|
compareMantissa = mantissaHigh >>> shift;
|
|
mantissaHigh = (mantissaHigh << (32 - shift)) | (mantissaLow >>> shift);
|
|
mantissaLow = mantissaLow << (32 - shift);
|
|
} else if (msdTopBit === kMantissaHighTopBit) {
|
|
remainingMantissaBits = 32;
|
|
compareMantissa = mantissaHigh;
|
|
mantissaHigh = mantissaLow;
|
|
} else {
|
|
const shift = msdTopBit - kMantissaHighTopBit;
|
|
remainingMantissaBits = 32 - shift;
|
|
compareMantissa =
|
|
(mantissaHigh << shift) | (mantissaLow >>> (32 - shift));
|
|
mantissaHigh = mantissaLow << shift;
|
|
}
|
|
xMsd = xMsd >>> 0;
|
|
compareMantissa = compareMantissa >>> 0;
|
|
if (xMsd > compareMantissa) return JSBI.__absoluteGreater(xSign);
|
|
if (xMsd < compareMantissa) return JSBI.__absoluteLess(xSign);
|
|
// Then, compare additional digits against remaining mantissa bits.
|
|
for (let digitIndex = xLength - 2; digitIndex >= 0; digitIndex--) {
|
|
if (remainingMantissaBits > 0) {
|
|
remainingMantissaBits -= 32;
|
|
compareMantissa = mantissaHigh >>> 0;
|
|
mantissaHigh = mantissaLow;
|
|
mantissaLow = 0;
|
|
} else {
|
|
compareMantissa = 0;
|
|
}
|
|
const digit = x.__unsignedDigit(digitIndex);
|
|
if (digit > compareMantissa) return JSBI.__absoluteGreater(xSign);
|
|
if (digit < compareMantissa) return JSBI.__absoluteLess(xSign);
|
|
}
|
|
// Integer parts are equal; check whether {y} has a fractional part.
|
|
if (mantissaHigh !== 0 || mantissaLow !== 0) {
|
|
if (remainingMantissaBits === 0) throw new Error('implementation bug');
|
|
return JSBI.__absoluteLess(xSign);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __equalToNumber(x, y) {
|
|
if (y | 0 === y) {
|
|
if (y === 0) return x.length === 0;
|
|
// Any multi-digit BigInt is bigger than an int32.
|
|
return (x.length === 1) && (x.sign === (y < 0)) &&
|
|
(x.__unsignedDigit(0) === Math.abs(y));
|
|
}
|
|
return JSBI.__compareToDouble(x, y) === 0;
|
|
}
|
|
|
|
// Comparison operations, chosen such that "op ^ 2" reverses direction:
|
|
// 0 - lessThan
|
|
// 1 - lessThanOrEqual
|
|
// 2 - greaterThan
|
|
// 3 - greaterThanOrEqual
|
|
static __comparisonResultToBool(result, op) {
|
|
switch (op) {
|
|
case 0: return result < 0;
|
|
case 1: return result <= 0;
|
|
case 2: return result > 0;
|
|
case 3: return result >= 0;
|
|
}
|
|
throw new Error('unreachable');
|
|
}
|
|
|
|
static __compare(x, y, op) {
|
|
x = JSBI.__toPrimitive(x);
|
|
y = JSBI.__toPrimitive(y);
|
|
if (typeof x === 'string' && typeof y === 'string') {
|
|
switch (op) {
|
|
case 0: return x < y;
|
|
case 1: return x <= y;
|
|
case 2: return x > y;
|
|
case 3: return x >= y;
|
|
}
|
|
}
|
|
if (JSBI.__isBigInt(x) && typeof y === 'string') {
|
|
y = JSBI.__fromString(y);
|
|
if (y === null) return false;
|
|
return JSBI.__comparisonResultToBool(JSBI.__compareToBigInt(x, y), op);
|
|
}
|
|
if (typeof x === 'string' && JSBI.__isBigInt(y)) {
|
|
x = JSBI.__fromString(x);
|
|
if (x === null) return false;
|
|
return JSBI.__comparisonResultToBool(JSBI.__compareToBigInt(x, y), op);
|
|
}
|
|
x = JSBI.__toNumeric(x);
|
|
y = JSBI.__toNumeric(y);
|
|
if (JSBI.__isBigInt(x)) {
|
|
if (JSBI.__isBigInt(y)) {
|
|
return JSBI.__comparisonResultToBool(JSBI.__compareToBigInt(x, y), op);
|
|
}
|
|
if (typeof y !== 'number') throw new Error('implementation bug');
|
|
return JSBI.__comparisonResultToBool(JSBI.__compareToNumber(x, y), op);
|
|
}
|
|
if (typeof x !== 'number') throw new Error('implementation bug');
|
|
if (JSBI.__isBigInt(y)) {
|
|
// Note that "op ^ 2" reverses the op's direction.
|
|
return JSBI.__comparisonResultToBool(JSBI.__compareToNumber(y, x),
|
|
op ^ 2);
|
|
}
|
|
if (typeof y !== 'number') throw new Error('implementation bug');
|
|
switch (op) {
|
|
case 0: return x < y;
|
|
case 1: return x <= y;
|
|
case 2: return x > y;
|
|
case 3: return x >= y;
|
|
}
|
|
}
|
|
|
|
__clzmsd() {
|
|
return Math.clz32(this[this.length - 1]);
|
|
}
|
|
|
|
static __absoluteAdd(x, y, resultSign) {
|
|
if (x.length < y.length) return JSBI.__absoluteAdd(y, x, resultSign);
|
|
if (x.length === 0) return x;
|
|
if (y.length === 0) return x.sign === resultSign ? x : JSBI.unaryMinus(x);
|
|
let resultLength = x.length;
|
|
if (x.__clzmsd() === 0 || (y.length === x.length && y.__clzmsd() === 0)) {
|
|
resultLength++;
|
|
}
|
|
const result = new JSBI(resultLength, resultSign);
|
|
let carry = 0;
|
|
let i = 0;
|
|
for (; i < y.length; i++) {
|
|
const yDigit = y.__digit(i);
|
|
const xDigit = x.__digit(i);
|
|
const rLow = (xDigit & 0xFFFF) + (yDigit & 0xFFFF) + carry;
|
|
const rHigh = (xDigit >>> 16) + (yDigit >>> 16) + (rLow >>> 16);
|
|
carry = rHigh >>> 16;
|
|
result.__setDigit(i, (rLow & 0xFFFF) | (rHigh << 16));
|
|
}
|
|
for (; i < x.length; i++) {
|
|
const xDigit = x.__digit(i);
|
|
const rLow = (xDigit & 0xFFFF) + carry;
|
|
const rHigh = (xDigit >>> 16) + (rLow >>> 16);
|
|
carry = rHigh >>> 16;
|
|
result.__setDigit(i, (rLow & 0xFFFF) | (rHigh << 16));
|
|
}
|
|
if (i < result.length) {
|
|
result.__setDigit(i, carry);
|
|
}
|
|
return result.__trim();
|
|
}
|
|
|
|
static __absoluteSub(x, y, resultSign) {
|
|
if (x.length === 0) return x;
|
|
if (y.length === 0) return x.sign === resultSign ? x : JSBI.unaryMinus(x);
|
|
const result = new JSBI(x.length, resultSign);
|
|
let borrow = 0;
|
|
let i = 0;
|
|
for (; i < y.length; i++) {
|
|
const xDigit = x.__digit(i);
|
|
const yDigit = y.__digit(i);
|
|
const rLow = (xDigit & 0xFFFF) - (yDigit & 0xFFFF) - borrow;
|
|
borrow = (rLow >>> 16) & 1;
|
|
const rHigh = (xDigit >>> 16) - (yDigit >>> 16) - borrow;
|
|
borrow = (rHigh >>> 16) & 1;
|
|
result.__setDigit(i, (rLow & 0xFFFF) | (rHigh << 16));
|
|
}
|
|
for (; i < x.length; i++) {
|
|
const xDigit = x.__digit(i);
|
|
const rLow = (xDigit & 0xFFFF) - borrow;
|
|
borrow = (rLow >>> 16) & 1;
|
|
const rHigh = (xDigit >>> 16) - borrow;
|
|
borrow = (rHigh >>> 16) & 1;
|
|
result.__setDigit(i, (rLow & 0xFFFF) | (rHigh << 16));
|
|
}
|
|
return result.__trim();
|
|
}
|
|
|
|
static __absoluteAddOne(x, sign, result = null) {
|
|
const inputLength = x.length;
|
|
if (result === null) {
|
|
result = new JSBI(inputLength, sign);
|
|
} else {
|
|
result.sign = sign;
|
|
}
|
|
let carry = true;
|
|
for (let i = 0; i < inputLength; i++) {
|
|
let digit = x.__digit(i);
|
|
const newCarry = digit === (0xFFFFFFFF | 0);
|
|
if (carry) digit = (digit + 1) | 0;
|
|
carry = newCarry;
|
|
result.__setDigit(i, digit);
|
|
}
|
|
if (carry) {
|
|
result.__setDigitGrow(inputLength, 1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __absoluteSubOne(x, resultLength) {
|
|
const length = x.length;
|
|
resultLength = resultLength || length;
|
|
const result = new JSBI(resultLength, false);
|
|
let borrow = true;
|
|
for (let i = 0; i < length; i++) {
|
|
let digit = x.__digit(i);
|
|
const newBorrow = digit === 0;
|
|
if (borrow) digit = (digit - 1) | 0;
|
|
borrow = newBorrow;
|
|
result.__setDigit(i, digit);
|
|
}
|
|
for (let i = length; i < resultLength; i++) {
|
|
result.__setDigit(i, 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __absoluteAnd(x, y, result = null) {
|
|
let xLength = x.length;
|
|
let yLength = y.length;
|
|
let numPairs = yLength;
|
|
if (xLength < yLength) {
|
|
numPairs = xLength;
|
|
const tmp = x;
|
|
const tmpLength = xLength;
|
|
x = y;
|
|
xLength = yLength;
|
|
y = tmp;
|
|
yLength = tmpLength;
|
|
}
|
|
let resultLength = numPairs;
|
|
if (result === null) {
|
|
result = new JSBI(resultLength, false);
|
|
} else {
|
|
resultLength = result.length;
|
|
}
|
|
let i = 0;
|
|
for (; i < numPairs; i++) {
|
|
result.__setDigit(i, x.__digit(i) & y.__digit(i));
|
|
}
|
|
for (; i < resultLength; i++) {
|
|
result.__setDigit(i, 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __absoluteAndNot(x, y, result = null) {
|
|
const xLength = x.length;
|
|
const yLength = y.length;
|
|
let numPairs = yLength;
|
|
if (xLength < yLength) {
|
|
numPairs = xLength;
|
|
}
|
|
let resultLength = xLength;
|
|
if (result === null) {
|
|
result = new JSBI(resultLength, false);
|
|
} else {
|
|
resultLength = result.length;
|
|
}
|
|
let i = 0;
|
|
for (; i < numPairs; i++) {
|
|
result.__setDigit(i, x.__digit(i) & ~y.__digit(i));
|
|
}
|
|
for (; i < xLength; i++) {
|
|
result.__setDigit(i, x.__digit(i));
|
|
}
|
|
for (; i < resultLength; i++) {
|
|
result.__setDigit(i, 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __absoluteOr(x, y, result = null) {
|
|
let xLength = x.length;
|
|
let yLength = y.length;
|
|
let numPairs = yLength;
|
|
if (xLength < yLength) {
|
|
numPairs = xLength;
|
|
const tmp = x;
|
|
const tmpLength = xLength;
|
|
x = y;
|
|
xLength = yLength;
|
|
y = tmp;
|
|
yLength = tmpLength;
|
|
}
|
|
let resultLength = xLength;
|
|
if (result === null) {
|
|
result = new JSBI(resultLength, false);
|
|
} else {
|
|
resultLength = result.length;
|
|
}
|
|
let i = 0;
|
|
for (; i < numPairs; i++) {
|
|
result.__setDigit(i, x.__digit(i) | y.__digit(i));
|
|
}
|
|
for (; i < xLength; i++) {
|
|
result.__setDigit(i, x.__digit(i));
|
|
}
|
|
for (; i < resultLength; i++) {
|
|
result.__setDigit(i, 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __absoluteXor(x, y, result = null) {
|
|
let xLength = x.length;
|
|
let yLength = y.length;
|
|
let numPairs = yLength;
|
|
if (xLength < yLength) {
|
|
numPairs = xLength;
|
|
const tmp = x;
|
|
const tmpLength = xLength;
|
|
x = y;
|
|
xLength = yLength;
|
|
y = tmp;
|
|
yLength = tmpLength;
|
|
}
|
|
let resultLength = xLength;
|
|
if (result === null) {
|
|
result = new JSBI(resultLength, false);
|
|
} else {
|
|
resultLength = result.length;
|
|
}
|
|
let i = 0;
|
|
for (; i < numPairs; i++) {
|
|
result.__setDigit(i, x.__digit(i) ^ y.__digit(i));
|
|
}
|
|
for (; i < xLength; i++) {
|
|
result.__setDigit(i, x.__digit(i));
|
|
}
|
|
for (; i < resultLength; i++) {
|
|
result.__setDigit(i, 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __absoluteCompare(x, y) {
|
|
const diff = x.length - y.length;
|
|
if (diff !== 0) return diff;
|
|
let i = x.length - 1;
|
|
while (i >= 0 && x.__digit(i) === y.__digit(i)) i--;
|
|
if (i < 0) return 0;
|
|
return x.__unsignedDigit(i) > y.__unsignedDigit(i) ? 1 : -1;
|
|
}
|
|
|
|
static __multiplyAccumulate(multiplicand, multiplier, accumulator,
|
|
accumulatorIndex) {
|
|
if (multiplier === 0) return;
|
|
const m2Low = multiplier & 0xFFFF;
|
|
const m2High = multiplier >>> 16;
|
|
let carry = 0;
|
|
let highLower = 0;
|
|
let highHigher = 0;
|
|
for (let i = 0; i < multiplicand.length; i++, accumulatorIndex++) {
|
|
let acc = accumulator.__digit(accumulatorIndex);
|
|
let accLow = acc & 0xFFFF;
|
|
let accHigh = acc >>> 16;
|
|
const m1 = multiplicand.__digit(i);
|
|
const m1Low = m1 & 0xFFFF;
|
|
const m1High = m1 >>> 16;
|
|
const rLow = Math.imul(m1Low, m2Low);
|
|
const rMid1 = Math.imul(m1Low, m2High);
|
|
const rMid2 = Math.imul(m1High, m2Low);
|
|
const rHigh = Math.imul(m1High, m2High);
|
|
accLow += highLower + (rLow & 0xFFFF);
|
|
accHigh += highHigher + carry + (accLow >>> 16) + (rLow >>> 16) +
|
|
(rMid1 & 0xFFFF) + (rMid2 & 0xFFFF);
|
|
carry = accHigh >>> 16;
|
|
highLower = (rMid1 >>> 16) + (rMid2 >>> 16) + (rHigh & 0xFFFF) + carry;
|
|
carry = highLower >>> 16;
|
|
highLower &= 0xFFFF;
|
|
highHigher = rHigh >>> 16;
|
|
acc = (accLow & 0xFFFF) | (accHigh << 16);
|
|
accumulator.__setDigit(accumulatorIndex, acc);
|
|
}
|
|
for (; carry !== 0 || highLower !== 0 || highHigher !== 0;
|
|
accumulatorIndex++) {
|
|
let acc = accumulator.__digit(accumulatorIndex);
|
|
const accLow = (acc & 0xFFFF) + highLower;
|
|
const accHigh = (acc >>> 16) + (accLow >>> 16) + highHigher + carry;
|
|
highLower = 0;
|
|
highHigher = 0;
|
|
carry = accHigh >>> 16;
|
|
acc = (accLow & 0xFFFF) | (accHigh << 16);
|
|
accumulator.__setDigit(accumulatorIndex, acc);
|
|
}
|
|
}
|
|
|
|
static __internalMultiplyAdd(source, factor, summand, n, result) {
|
|
let carry = summand;
|
|
let high = 0;
|
|
for (let i = 0; i < n; i++) {
|
|
const digit = source.__digit(i);
|
|
const rx = Math.imul(digit & 0xFFFF, factor);
|
|
const r0 = (rx & 0xFFFF) + high + carry;
|
|
carry = r0 >>> 16;
|
|
const ry = Math.imul(digit >>> 16, factor);
|
|
const r16 = (ry & 0xFFFF) + (rx >>> 16) + carry;
|
|
carry = r16 >>> 16;
|
|
high = ry >>> 16;
|
|
result.__setDigit(i, (r16 << 16) | (r0 & 0xFFFF));
|
|
}
|
|
if (result.length > n) {
|
|
result.__setDigit(n++, carry + high);
|
|
while (n < result.length) {
|
|
result.__setDigit(n++, 0);
|
|
}
|
|
} else {
|
|
if (carry + high !== 0) throw new Error('implementation bug');
|
|
}
|
|
}
|
|
|
|
__inplaceMultiplyAdd(multiplier, summand, length) {
|
|
if (length > this.length) length = this.length;
|
|
const mLow = multiplier & 0xFFFF;
|
|
const mHigh = multiplier >>> 16;
|
|
let carry = 0;
|
|
let highLower = summand & 0xFFFF;
|
|
let highHigher = summand >>> 16;
|
|
for (let i = 0; i < length; i++) {
|
|
const d = this.__digit(i);
|
|
const dLow = d & 0xFFFF;
|
|
const dHigh = d >>> 16;
|
|
const pLow = Math.imul(dLow, mLow);
|
|
const pMid1 = Math.imul(dLow, mHigh);
|
|
const pMid2 = Math.imul(dHigh, mLow);
|
|
const pHigh = Math.imul(dHigh, mHigh);
|
|
const rLow = highLower + (pLow & 0xFFFF);
|
|
const rHigh = highHigher + carry + (rLow >>> 16) + (pLow >>> 16) +
|
|
(pMid1 & 0xFFFF) + (pMid2 & 0xFFFF);
|
|
highLower = (pMid1 >>> 16) + (pMid2 >>> 16) + (pHigh & 0xFFFF) +
|
|
(rHigh >>> 16);
|
|
carry = highLower >>> 16;
|
|
highLower &= 0xFFFF;
|
|
highHigher = pHigh >>> 16;
|
|
const result = (rLow & 0xFFFF) | (rHigh << 16);
|
|
this.__setDigit(i, result);
|
|
}
|
|
if (carry !== 0 || highLower !== 0 || highHigher !== 0) {
|
|
throw new Error('implementation bug');
|
|
}
|
|
}
|
|
|
|
static __absoluteDivSmall(x, divisor, quotient) {
|
|
if (quotient === null) quotient = new JSBI(x.length, false);
|
|
let remainder = 0;
|
|
for (let i = x.length * 2 - 1; i >= 0; i -= 2) {
|
|
let input = ((remainder << 16) | x.__halfDigit(i)) >>> 0;
|
|
const upperHalf = (input / divisor) | 0;
|
|
remainder = (input % divisor) | 0;
|
|
input = ((remainder << 16) | x.__halfDigit(i - 1)) >>> 0;
|
|
const lowerHalf = (input / divisor) | 0;
|
|
remainder = (input % divisor) | 0;
|
|
quotient.__setDigit(i >>> 1, (upperHalf << 16) | lowerHalf);
|
|
}
|
|
return quotient;
|
|
}
|
|
|
|
static __absoluteModSmall(x, divisor) {
|
|
let remainder = 0;
|
|
for (let i = x.length * 2 - 1; i >= 0; i--) {
|
|
const input = ((remainder << 16) | x.__halfDigit(i)) >>> 0;
|
|
remainder = (input % divisor) | 0;
|
|
}
|
|
return remainder;
|
|
}
|
|
|
|
static __absoluteDivLarge(dividend, divisor, wantQuotient, wantRemainder) {
|
|
const n = divisor.__halfDigitLength();
|
|
const n2 = divisor.length;
|
|
const m = dividend.__halfDigitLength() - n;
|
|
let q = null;
|
|
if (wantQuotient) {
|
|
q = new JSBI((m + 2) >>> 1, false);
|
|
q.__initializeDigits();
|
|
}
|
|
const qhatv = new JSBI((n + 2) >>> 1, false);
|
|
qhatv.__initializeDigits();
|
|
// D1.
|
|
const shift = JSBI.__clz16(divisor.__halfDigit(n - 1));
|
|
if (shift > 0) {
|
|
divisor = JSBI.__specialLeftShift(divisor, shift, 0 /* add no digits*/);
|
|
}
|
|
const u = JSBI.__specialLeftShift(dividend, shift, 1 /* add one digit */);
|
|
// D2.
|
|
const vn1 = divisor.__halfDigit(n - 1);
|
|
let halfDigitBuffer = 0;
|
|
for (let j = m; j >= 0; j--) {
|
|
// D3.
|
|
let qhat = 0xFFFF;
|
|
const ujn = u.__halfDigit(j + n);
|
|
if (ujn !== vn1) {
|
|
const input = ((ujn << 16) | u.__halfDigit(j + n - 1)) >>> 0;
|
|
qhat = (input / vn1) | 0;
|
|
let rhat = (input % vn1) | 0;
|
|
const vn2 = divisor.__halfDigit(n - 2);
|
|
const ujn2 = u.__halfDigit(j + n - 2);
|
|
while ((Math.imul(qhat, vn2) >>> 0) > (((rhat << 16) | ujn2) >>> 0)) {
|
|
qhat--;
|
|
rhat += vn1;
|
|
if (rhat > 0xFFFF) break;
|
|
}
|
|
}
|
|
// D4.
|
|
JSBI.__internalMultiplyAdd(divisor, qhat, 0, n2, qhatv);
|
|
let c = u.__inplaceSub(qhatv, j, n + 1);
|
|
if (c !== 0) {
|
|
c = u.__inplaceAdd(divisor, j, n);
|
|
u.__setHalfDigit(j + n, u.__halfDigit(j + n) + c);
|
|
qhat--;
|
|
}
|
|
if (wantQuotient) {
|
|
if (j & 1) {
|
|
halfDigitBuffer = qhat << 16;
|
|
} else {
|
|
q.__setDigit(j >>> 1, halfDigitBuffer | qhat);
|
|
}
|
|
}
|
|
}
|
|
if (wantRemainder) {
|
|
u.__inplaceRightShift(shift);
|
|
if (wantQuotient) {
|
|
return {quotient: q, remainder: u};
|
|
}
|
|
return u;
|
|
}
|
|
if (wantQuotient) return q;
|
|
}
|
|
|
|
static __clz16(value) {
|
|
return Math.clz32(value) - 16;
|
|
}
|
|
|
|
// TODO: work on full digits, like __inplaceSub?
|
|
__inplaceAdd(summand, startIndex, halfDigits) {
|
|
let carry = 0;
|
|
for (let i = 0; i < halfDigits; i++) {
|
|
const sum = this.__halfDigit(startIndex + i) +
|
|
summand.__halfDigit(i) +
|
|
carry;
|
|
carry = sum >>> 16;
|
|
this.__setHalfDigit(startIndex + i, sum);
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
__inplaceSub(subtrahend, startIndex, halfDigits) {
|
|
const fullSteps = (halfDigits - 1) >>> 1;
|
|
let borrow = 0;
|
|
if (startIndex & 1) {
|
|
// this: [..][..][..]
|
|
// subtr.: [..][..]
|
|
startIndex >>= 1;
|
|
let current = this.__digit(startIndex);
|
|
let r0 = current & 0xFFFF;
|
|
let i = 0;
|
|
for (; i < fullSteps; i++) {
|
|
const sub = subtrahend.__digit(i);
|
|
const r16 = (current >>> 16) - (sub & 0xFFFF) - borrow;
|
|
borrow = (r16 >>> 16) & 1;
|
|
this.__setDigit(startIndex + i, (r16 << 16) | (r0 & 0xFFFF));
|
|
current = this.__digit(startIndex + i + 1);
|
|
r0 = (current & 0xFFFF) - (sub >>> 16) - borrow;
|
|
borrow = (r0 >>> 16) & 1;
|
|
}
|
|
// Unrolling the last iteration gives a 5% performance benefit!
|
|
const sub = subtrahend.__digit(i);
|
|
const r16 = (current >>> 16) - (sub & 0xFFFF) - borrow;
|
|
borrow = (r16 >>> 16) & 1;
|
|
this.__setDigit(startIndex + i, (r16 << 16) | (r0 & 0xFFFF));
|
|
const subTop = sub >>> 16;
|
|
if (startIndex + i + 1 >= this.length) {
|
|
throw new RangeError('out of bounds');
|
|
}
|
|
if ((halfDigits & 1) === 0) {
|
|
current = this.__digit(startIndex + i + 1);
|
|
r0 = (current & 0xFFFF) - subTop - borrow;
|
|
borrow = (r0 >>> 16) & 1;
|
|
this.__setDigit(startIndex + subtrahend.length,
|
|
(current & 0xFFFF0000) | (r0 & 0xFFFF));
|
|
}
|
|
} else {
|
|
startIndex >>= 1;
|
|
let i = 0;
|
|
for (; i < subtrahend.length - 1; i++) {
|
|
const current = this.__digit(startIndex + i);
|
|
const sub = subtrahend.__digit(i);
|
|
const r0 = (current & 0xFFFF) - (sub & 0xFFFF) - borrow;
|
|
borrow = (r0 >>> 16) & 1;
|
|
const r16 = (current >>> 16) - (sub >>> 16) - borrow;
|
|
borrow = (r16 >>> 16) & 1;
|
|
this.__setDigit(startIndex + i, (r16 << 16) | (r0 & 0xFFFF));
|
|
}
|
|
const current = this.__digit(startIndex + i);
|
|
const sub = subtrahend.__digit(i);
|
|
const r0 = (current & 0xFFFF) - (sub & 0xFFFF) - borrow;
|
|
borrow = (r0 >>> 16) & 1;
|
|
let r16 = 0;
|
|
if ((halfDigits & 1) === 0) {
|
|
r16 = (current >>> 16) - (sub >>> 16) - borrow;
|
|
borrow = (r16 >>> 16) & 1;
|
|
}
|
|
this.__setDigit(startIndex + i, (r16 << 16) | (r0 & 0xFFFF));
|
|
}
|
|
return borrow;
|
|
}
|
|
|
|
__inplaceRightShift(shift) {
|
|
if (shift === 0) return;
|
|
let carry = this.__digit(0) >>> shift;
|
|
const last = this.length - 1;
|
|
for (let i = 0; i < last; i++) {
|
|
const d = this.__digit(i + 1);
|
|
this.__setDigit(i, (d << (32 - shift)) | carry);
|
|
carry = d >>> shift;
|
|
}
|
|
this.__setDigit(last, carry);
|
|
}
|
|
|
|
static __specialLeftShift(x, shift, addDigit) {
|
|
const n = x.length;
|
|
const resultLength = n + addDigit;
|
|
const result = new JSBI(resultLength, false);
|
|
if (shift === 0) {
|
|
for (let i = 0; i < n; i++) result.__setDigit(i, x.__digit(i));
|
|
if (addDigit > 0) result.__setDigit(n, 0);
|
|
return result;
|
|
}
|
|
let carry = 0;
|
|
for (let i = 0; i < n; i++) {
|
|
const d = x.__digit(i);
|
|
result.__setDigit(i, (d << shift) | carry);
|
|
carry = d >>> (32 - shift);
|
|
}
|
|
if (addDigit > 0) {
|
|
result.__setDigit(n, carry);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static __leftShiftByAbsolute(x, y) {
|
|
const shift = JSBI.__toShiftAmount(y);
|
|
if (shift < 0) throw new RangeError('BigInt too big');
|
|
const digitShift = shift >>> 5;
|
|
const bitsShift = shift & 31;
|
|
const length = x.length;
|
|
const grow = bitsShift !== 0 &&
|
|
(x.__digit(length - 1) >>> (32 - bitsShift)) !== 0;
|
|
const resultLength = length + digitShift + (grow ? 1 : 0);
|
|
const result = new JSBI(resultLength, x.sign);
|
|
if (bitsShift === 0) {
|
|
let i = 0;
|
|
for (; i < digitShift; i++) result.__setDigit(i, 0);
|
|
for (; i < resultLength; i++) {
|
|
result.__setDigit(i, x.__digit(i - digitShift));
|
|
}
|
|
} else {
|
|
let carry = 0;
|
|
for (let i = 0; i < digitShift; i++) result.__setDigit(i, 0);
|
|
for (let i = 0; i < length; i++) {
|
|
const d = x.__digit(i);
|
|
result.__setDigit(i + digitShift, (d << bitsShift) | carry);
|
|
carry = d >>> (32 - bitsShift);
|
|
}
|
|
if (grow) {
|
|
result.__setDigit(length + digitShift, carry);
|
|
} else {
|
|
if (carry !== 0) throw new Error('implementation bug');
|
|
}
|
|
}
|
|
return result.__trim();
|
|
}
|
|
|
|
static __rightShiftByAbsolute(x, y) {
|
|
const length = x.length;
|
|
const sign = x.sign;
|
|
const shift = JSBI.__toShiftAmount(y);
|
|
if (shift < 0) return JSBI.__rightShiftByMaximum(sign);
|
|
const digitShift = shift >>> 5;
|
|
const bitsShift = shift & 31;
|
|
let resultLength = length - digitShift;
|
|
if (resultLength <= 0) return JSBI.__rightShiftByMaximum(sign);
|
|
// For negative numbers, round down if any bit was shifted out (so that
|
|
// e.g. -5n >> 1n == -3n and not -2n). Check now whether this will happen
|
|
// and whether itc an cause overflow into a new digit. If we allocate the
|
|
// result large enough up front, it avoids having to do grow it later.
|
|
let mustRoundDown = false;
|
|
if (sign) {
|
|
const mask = (1 << bitsShift) - 1;
|
|
if ((x.__digit(digitShift) & mask) !== 0) {
|
|
mustRoundDown = true;
|
|
} else {
|
|
for (let i = 0; i < digitShift; i++) {
|
|
if (x.__digit(i) !== 0) {
|
|
mustRoundDown = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// If bitsShift is non-zero, it frees up bits, preventing overflow.
|
|
if (mustRoundDown && bitsShift === 0) {
|
|
// Overflow cannot happen if the most significant digit has unset bits.
|
|
const msd = x.__digit(length - 1);
|
|
const roundingCanOverflow = ~msd === 0;
|
|
if (roundingCanOverflow) resultLength++;
|
|
}
|
|
let result = new JSBI(resultLength, sign);
|
|
if (bitsShift === 0) {
|
|
for (let i = digitShift; i < length; i++) {
|
|
result.__setDigit(i - digitShift, x.__digit(i));
|
|
}
|
|
} else {
|
|
let carry = x.__digit(digitShift) >>> bitsShift;
|
|
const last = length - digitShift - 1;
|
|
for (let i = 0; i < last; i++) {
|
|
const d = x.__digit(i + digitShift + 1);
|
|
result.__setDigit(i, (d << (32 - bitsShift)) | carry);
|
|
carry = d >>> bitsShift;
|
|
}
|
|
result.__setDigit(last, carry);
|
|
}
|
|
if (mustRoundDown) {
|
|
// Since the result is negative, rounding down means adding one to its
|
|
// absolute value. This cannot overflow.
|
|
result = JSBI.__absoluteAddOne(result, true, result);
|
|
}
|
|
return result.__trim();
|
|
}
|
|
|
|
static __rightShiftByMaximum(sign) {
|
|
if (sign) {
|
|
return JSBI.__oneDigit(1, true);
|
|
}
|
|
return JSBI.__zero();
|
|
}
|
|
|
|
static __toShiftAmount(x) {
|
|
if (x.length > 1) return -1;
|
|
const value = x.__unsignedDigit(0);
|
|
if (value > JSBI.__kMaxLengthBits) return -1;
|
|
return value;
|
|
}
|
|
|
|
static __toPrimitive(obj, hint='default') {
|
|
if (typeof obj !== 'object') return obj;
|
|
if (obj.constructor === JSBI) return obj;
|
|
const exoticToPrim = obj[Symbol.toPrimitive];
|
|
if (exoticToPrim) {
|
|
const primitive = exoticToPrim(hint);
|
|
if (typeof primitive !== 'object') return primitive;
|
|
throw new TypeError('Cannot convert object to primitive value');
|
|
}
|
|
const valueOf = obj.valueOf;
|
|
if (valueOf) {
|
|
const primitive = valueOf.call(obj);
|
|
if (typeof primitive !== 'object') return primitive;
|
|
}
|
|
const toString = obj.toString;
|
|
if (toString) {
|
|
const primitive = toString.call(obj);
|
|
if (typeof primitive !== 'object') return primitive;
|
|
}
|
|
throw new TypeError('Cannot convert object to primitive value');
|
|
}
|
|
|
|
static __toNumeric(value) {
|
|
if (JSBI.__isBigInt(value)) return value;
|
|
return +value;
|
|
}
|
|
|
|
static __isBigInt(value) {
|
|
return typeof value === 'object' && value.constructor === JSBI;
|
|
}
|
|
|
|
// Digit helpers.
|
|
__digit(i) {
|
|
return this[i];
|
|
}
|
|
__unsignedDigit(i) {
|
|
return this[i] >>> 0;
|
|
}
|
|
__setDigit(i, digit) {
|
|
this[i] = digit | 0;
|
|
}
|
|
__setDigitGrow(i, digit) {
|
|
this[i] = digit | 0;
|
|
}
|
|
__halfDigitLength() {
|
|
const len = this.length;
|
|
if (this.__unsignedDigit(len - 1) <= 0xFFFF) return len * 2 - 1;
|
|
return len*2;
|
|
}
|
|
__halfDigit(i) {
|
|
return (this[i >>> 1] >>> ((i & 1) << 4)) & 0xFFFF;
|
|
}
|
|
__setHalfDigit(i, value) {
|
|
const digitIndex = i >>> 1;
|
|
const previous = this.__digit(digitIndex);
|
|
const updated = (i & 1) ? (previous & 0xFFFF) | (value << 16)
|
|
: (previous & 0xFFFF0000) | (value & 0xFFFF);
|
|
this.__setDigit(digitIndex, updated);
|
|
}
|
|
|
|
static __digitPow(base, exponent) {
|
|
let result = 1;
|
|
while (exponent > 0) {
|
|
if (exponent & 1) result *= base;
|
|
exponent >>>= 1;
|
|
base *= base;
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
JSBI.__kMaxLength = 1 << 25;
|
|
JSBI.__kMaxLengthBits = JSBI.__kMaxLength << 5;
|
|
// Lookup table for the maximum number of bits required per character of a
|
|
// base-N string representation of a number. To increase accuracy, the array
|
|
// value is the actual value multiplied by 32. To generate this table:
|
|
//
|
|
// for (let i = 0; i <= 36; i++) {
|
|
// console.log(Math.ceil(Math.log2(i) * 32) + ',');
|
|
// }
|
|
JSBI.__kMaxBitsPerChar = [
|
|
0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8
|
|
102, 107, 111, 115, 119, 122, 126, 128, // 9..16
|
|
131, 134, 136, 139, 141, 143, 145, 147, // 17..24
|
|
149, 151, 153, 154, 156, 158, 159, 160, // 25..32
|
|
162, 163, 165, 166, // 33..36
|
|
];
|
|
JSBI.__kBitsPerCharTableShift = 5;
|
|
JSBI.__kBitsPerCharTableMultiplier = 1 << JSBI.__kBitsPerCharTableShift;
|
|
JSBI.__kConversionChars = '0123456789abcdefghijklmnopqrstuvwxyz'.split('');
|
|
JSBI.__kBitConversionBuffer = new ArrayBuffer(8);
|
|
JSBI.__kBitConversionDouble = new Float64Array(JSBI.__kBitConversionBuffer);
|
|
JSBI.__kBitConversionInts = new Int32Array(JSBI.__kBitConversionBuffer);
|