You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			217 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
			
		
		
	
	
			217 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
| /*
 | |
|  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| 
 | |
| #include "webrtc/modules/audio_coding/neteq/time_stretch.h"
 | |
| 
 | |
| #include <algorithm>  // min, max
 | |
| 
 | |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
 | |
| #include "webrtc/modules/audio_coding/neteq/background_noise.h"
 | |
| #include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
 | |
| #include "webrtc/system_wrappers/interface/scoped_ptr.h"
 | |
| 
 | |
| namespace webrtc {
 | |
| 
 | |
| TimeStretch::ReturnCodes TimeStretch::Process(
 | |
|     const int16_t* input,
 | |
|     size_t input_len,
 | |
|     AudioMultiVector* output,
 | |
|     int16_t* length_change_samples) {
 | |
| 
 | |
|   // Pre-calculate common multiplication with |fs_mult_|.
 | |
|   int fs_mult_120 = fs_mult_ * 120;  // Corresponds to 15 ms.
 | |
| 
 | |
|   const int16_t* signal;
 | |
|   scoped_ptr<int16_t[]> signal_array;
 | |
|   size_t signal_len;
 | |
|   if (num_channels_ == 1) {
 | |
|     signal = input;
 | |
|     signal_len = input_len;
 | |
|   } else {
 | |
|     // We want |signal| to be only the first channel of |input|, which is
 | |
|     // interleaved. Thus, we take the first sample, skip forward |num_channels|
 | |
|     // samples, and continue like that.
 | |
|     signal_len = input_len / num_channels_;
 | |
|     signal_array.reset(new int16_t[signal_len]);
 | |
|     signal = signal_array.get();
 | |
|     size_t j = master_channel_;
 | |
|     for (size_t i = 0; i < signal_len; ++i) {
 | |
|       signal_array[i] = input[j];
 | |
|       j += num_channels_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Find maximum absolute value of input signal.
 | |
|   max_input_value_ = WebRtcSpl_MaxAbsValueW16(signal,
 | |
|                                               static_cast<int>(signal_len));
 | |
| 
 | |
|   // Downsample to 4 kHz sample rate and calculate auto-correlation.
 | |
|   DspHelper::DownsampleTo4kHz(signal, signal_len, kDownsampledLen,
 | |
|                               sample_rate_hz_, true /* compensate delay*/,
 | |
|                               downsampled_input_);
 | |
|   AutoCorrelation();
 | |
| 
 | |
|   // Find the strongest correlation peak.
 | |
|   static const int kNumPeaks = 1;
 | |
|   int peak_index;
 | |
|   int16_t peak_value;
 | |
|   DspHelper::PeakDetection(auto_correlation_, kCorrelationLen, kNumPeaks,
 | |
|                            fs_mult_, &peak_index, &peak_value);
 | |
|   // Assert that |peak_index| stays within boundaries.
 | |
|   assert(peak_index >= 0);
 | |
|   assert(peak_index <= (2 * kCorrelationLen - 1) * fs_mult_);
 | |
| 
 | |
|   // Compensate peak_index for displaced starting position. The displacement
 | |
|   // happens in AutoCorrelation(). Here, |kMinLag| is in the down-sampled 4 kHz
 | |
|   // domain, while the |peak_index| is in the original sample rate; hence, the
 | |
|   // multiplication by fs_mult_ * 2.
 | |
|   peak_index += kMinLag * fs_mult_ * 2;
 | |
|   // Assert that |peak_index| stays within boundaries.
 | |
|   assert(peak_index >= 20 * fs_mult_);
 | |
|   assert(peak_index <= 20 * fs_mult_ + (2 * kCorrelationLen - 1) * fs_mult_);
 | |
| 
 | |
|   // Calculate scaling to ensure that |peak_index| samples can be square-summed
 | |
|   // without overflowing.
 | |
|   int scaling = 31 - WebRtcSpl_NormW32(max_input_value_ * max_input_value_) -
 | |
|       WebRtcSpl_NormW32(peak_index);
 | |
|   scaling = std::max(0, scaling);
 | |
| 
 | |
|   // |vec1| starts at 15 ms minus one pitch period.
 | |
|   const int16_t* vec1 = &signal[fs_mult_120 - peak_index];
 | |
|   // |vec2| start at 15 ms.
 | |
|   const int16_t* vec2 = &signal[fs_mult_120];
 | |
|   // Calculate energies for |vec1| and |vec2|, assuming they both contain
 | |
|   // |peak_index| samples.
 | |
|   int32_t vec1_energy =
 | |
|       WebRtcSpl_DotProductWithScale(vec1, vec1, peak_index, scaling);
 | |
|   int32_t vec2_energy =
 | |
|       WebRtcSpl_DotProductWithScale(vec2, vec2, peak_index, scaling);
 | |
| 
 | |
|   // Calculate cross-correlation between |vec1| and |vec2|.
 | |
|   int32_t cross_corr =
 | |
|       WebRtcSpl_DotProductWithScale(vec1, vec2, peak_index, scaling);
 | |
| 
 | |
|   // Check if the signal seems to be active speech or not (simple VAD).
 | |
|   bool active_speech = SpeechDetection(vec1_energy, vec2_energy, peak_index,
 | |
|                                        scaling);
 | |
| 
 | |
|   int16_t best_correlation;
 | |
|   if (!active_speech) {
 | |
|     SetParametersForPassiveSpeech(signal_len, &best_correlation, &peak_index);
 | |
|   } else {
 | |
|     // Calculate correlation:
 | |
|     // cross_corr / sqrt(vec1_energy * vec2_energy).
 | |
| 
 | |
|     // Start with calculating scale values.
 | |
|     int energy1_scale = std::max(0, 16 - WebRtcSpl_NormW32(vec1_energy));
 | |
|     int energy2_scale = std::max(0, 16 - WebRtcSpl_NormW32(vec2_energy));
 | |
| 
 | |
|     // Make sure total scaling is even (to simplify scale factor after sqrt).
 | |
|     if ((energy1_scale + energy2_scale) & 1) {
 | |
|       // The sum is odd.
 | |
|       energy1_scale += 1;
 | |
|     }
 | |
| 
 | |
|     // Scale energies to int16_t.
 | |
|     int16_t vec1_energy_int16 =
 | |
|         static_cast<int16_t>(vec1_energy >> energy1_scale);
 | |
|     int16_t vec2_energy_int16 =
 | |
|         static_cast<int16_t>(vec2_energy >> energy2_scale);
 | |
| 
 | |
|     // Calculate square-root of energy product.
 | |
|     int16_t sqrt_energy_prod = WebRtcSpl_SqrtFloor(vec1_energy_int16 *
 | |
|                                                    vec2_energy_int16);
 | |
| 
 | |
|     // Calculate cross_corr / sqrt(en1*en2) in Q14.
 | |
|     int temp_scale = 14 - (energy1_scale + energy2_scale) / 2;
 | |
|     cross_corr = WEBRTC_SPL_SHIFT_W32(cross_corr, temp_scale);
 | |
|     cross_corr = std::max(0, cross_corr);  // Don't use if negative.
 | |
|     best_correlation = WebRtcSpl_DivW32W16(cross_corr, sqrt_energy_prod);
 | |
|     // Make sure |best_correlation| is no larger than 1 in Q14.
 | |
|     best_correlation = std::min(static_cast<int16_t>(16384), best_correlation);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Check accelerate criteria and stretch the signal.
 | |
|   ReturnCodes return_value = CheckCriteriaAndStretch(
 | |
|       input, input_len, peak_index, best_correlation, active_speech, output);
 | |
|   switch (return_value) {
 | |
|     case kSuccess:
 | |
|       *length_change_samples = peak_index;
 | |
|       break;
 | |
|     case kSuccessLowEnergy:
 | |
|       *length_change_samples = peak_index;
 | |
|       break;
 | |
|     case kNoStretch:
 | |
|     case kError:
 | |
|       *length_change_samples = 0;
 | |
|       break;
 | |
|   }
 | |
|   return return_value;
 | |
| }
 | |
| 
 | |
| void TimeStretch::AutoCorrelation() {
 | |
|   // Set scaling factor for cross correlation to protect against overflow.
 | |
|   int scaling = kLogCorrelationLen - WebRtcSpl_NormW32(
 | |
|       max_input_value_ * max_input_value_);
 | |
|   scaling = std::max(0, scaling);
 | |
| 
 | |
|   // Calculate correlation from lag kMinLag to lag kMaxLag in 4 kHz domain.
 | |
|   int32_t auto_corr[kCorrelationLen];
 | |
|   WebRtcSpl_CrossCorrelation(auto_corr, &downsampled_input_[kMaxLag],
 | |
|                              &downsampled_input_[kMaxLag - kMinLag],
 | |
|                              kCorrelationLen, kMaxLag - kMinLag, scaling, -1);
 | |
| 
 | |
|   // Normalize correlation to 14 bits and write to |auto_correlation_|.
 | |
|   int32_t max_corr = WebRtcSpl_MaxAbsValueW32(auto_corr, kCorrelationLen);
 | |
|   scaling = std::max(0, 17 - WebRtcSpl_NormW32(max_corr));
 | |
|   WebRtcSpl_VectorBitShiftW32ToW16(auto_correlation_, kCorrelationLen,
 | |
|                                    auto_corr, scaling);
 | |
| }
 | |
| 
 | |
| bool TimeStretch::SpeechDetection(int32_t vec1_energy, int32_t vec2_energy,
 | |
|                                   int peak_index, int scaling) const {
 | |
|   // Check if the signal seems to be active speech or not (simple VAD).
 | |
|   // If (vec1_energy + vec2_energy) / (2 * peak_index) <=
 | |
|   // 8 * background_noise_energy, then we say that the signal contains no
 | |
|   // active speech.
 | |
|   // Rewrite the inequality as:
 | |
|   // (vec1_energy + vec2_energy) / 16 <= peak_index * background_noise_energy.
 | |
|   // The two sides of the inequality will be denoted |left_side| and
 | |
|   // |right_side|.
 | |
|   int32_t left_side = (vec1_energy + vec2_energy) / 16;
 | |
|   int32_t right_side;
 | |
|   if (background_noise_.initialized()) {
 | |
|     right_side = background_noise_.Energy(master_channel_);
 | |
|   } else {
 | |
|     // If noise parameters have not been estimated, use a fixed threshold.
 | |
|     right_side = 75000;
 | |
|   }
 | |
|   int right_scale = 16 - WebRtcSpl_NormW32(right_side);
 | |
|   right_scale = std::max(0, right_scale);
 | |
|   left_side = left_side >> right_scale;
 | |
|   right_side = peak_index * (right_side >> right_scale);
 | |
| 
 | |
|   // Scale |left_side| properly before comparing with |right_side|.
 | |
|   // (|scaling| is the scale factor before energy calculation, thus the scale
 | |
|   // factor for the energy is 2 * scaling.)
 | |
|   if (WebRtcSpl_NormW32(left_side) < 2 * scaling) {
 | |
|     // Cannot scale only |left_side|, must scale |right_side| too.
 | |
|     int temp_scale = WebRtcSpl_NormW32(left_side);
 | |
|     left_side = left_side << temp_scale;
 | |
|     right_side = right_side >> (2 * scaling - temp_scale);
 | |
|   } else {
 | |
|     left_side = left_side << 2 * scaling;
 | |
|   }
 | |
|   return left_side > right_side;
 | |
| }
 | |
| 
 | |
| }  // namespace webrtc
 |