You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			794 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
			
		
		
	
	
			794 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
| /*
 | |
|  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| 
 | |
| /* digital_agc.c
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "webrtc/modules/audio_processing/agc/digital_agc.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| #ifdef AGC_DEBUG
 | |
| #include <stdio.h>
 | |
| #endif
 | |
| 
 | |
| #include "webrtc/modules/audio_processing/agc/include/gain_control.h"
 | |
| 
 | |
| // To generate the gaintable, copy&paste the following lines to a Matlab window:
 | |
| // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
 | |
| // zeros = 0:31; lvl = 2.^(1-zeros);
 | |
| // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
 | |
| // B = MaxGain - MinGain;
 | |
| // gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
 | |
| // fprintf(1, '\t%i, %i, %i, %i,\n', gains);
 | |
| // % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
 | |
| // in = 10*log10(lvl); out = 20*log10(gains/65536);
 | |
| // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
 | |
| // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
 | |
| // zoom on;
 | |
| 
 | |
| // Generator table for y=log2(1+e^x) in Q8.
 | |
| enum { kGenFuncTableSize = 128 };
 | |
| static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
 | |
|           256,   485,   786,  1126,  1484,  1849,  2217,  2586,
 | |
|          2955,  3324,  3693,  4063,  4432,  4801,  5171,  5540,
 | |
|          5909,  6279,  6648,  7017,  7387,  7756,  8125,  8495,
 | |
|          8864,  9233,  9603,  9972, 10341, 10711, 11080, 11449,
 | |
|         11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
 | |
|         14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
 | |
|         17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
 | |
|         20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
 | |
|         23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
 | |
|         26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
 | |
|         29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
 | |
|         32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
 | |
|         35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
 | |
|         38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
 | |
|         41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
 | |
|         44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
 | |
| };
 | |
| 
 | |
| static const int16_t kAvgDecayTime = 250; // frames; < 3000
 | |
| 
 | |
| int32_t WebRtcAgc_CalculateGainTable(int32_t *gainTable, // Q16
 | |
|                                      int16_t digCompGaindB, // Q0
 | |
|                                      int16_t targetLevelDbfs,// Q0
 | |
|                                      uint8_t limiterEnable,
 | |
|                                      int16_t analogTarget) // Q0
 | |
| {
 | |
|     // This function generates the compressor gain table used in the fixed digital part.
 | |
|     uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
 | |
|     int32_t inLevel, limiterLvl;
 | |
|     int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
 | |
|     const uint16_t kLog10 = 54426; // log2(10)     in Q14
 | |
|     const uint16_t kLog10_2 = 49321; // 10*log10(2)  in Q14
 | |
|     const uint16_t kLogE_1 = 23637; // log2(e)      in Q14
 | |
|     uint16_t constMaxGain;
 | |
|     uint16_t tmpU16, intPart, fracPart;
 | |
|     const int16_t kCompRatio = 3;
 | |
|     const int16_t kSoftLimiterLeft = 1;
 | |
|     int16_t limiterOffset = 0; // Limiter offset
 | |
|     int16_t limiterIdx, limiterLvlX;
 | |
|     int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
 | |
|     int16_t i, tmp16, tmp16no1;
 | |
|     int zeros, zerosScale;
 | |
| 
 | |
|     // Constants
 | |
| //    kLogE_1 = 23637; // log2(e)      in Q14
 | |
| //    kLog10 = 54426; // log2(10)     in Q14
 | |
| //    kLog10_2 = 49321; // 10*log10(2)  in Q14
 | |
| 
 | |
|     // Calculate maximum digital gain and zero gain level
 | |
|     tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB - analogTarget, kCompRatio - 1);
 | |
|     tmp16no1 = analogTarget - targetLevelDbfs;
 | |
|     tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
 | |
|     maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
 | |
|     tmp32no1 = WEBRTC_SPL_MUL_16_16(maxGain, kCompRatio);
 | |
|     zeroGainLvl = digCompGaindB;
 | |
|     zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
 | |
|                                              kCompRatio - 1);
 | |
|     if ((digCompGaindB <= analogTarget) && (limiterEnable))
 | |
|     {
 | |
|         zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
 | |
|         limiterOffset = 0;
 | |
|     }
 | |
| 
 | |
|     // Calculate the difference between maximum gain and gain at 0dB0v:
 | |
|     //  diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
 | |
|     //           = (compRatio-1)*digCompGaindB/compRatio
 | |
|     tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB, kCompRatio - 1);
 | |
|     diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
 | |
|     if (diffGain < 0 || diffGain >= kGenFuncTableSize)
 | |
|     {
 | |
|         assert(0);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     // Calculate the limiter level and index:
 | |
|     //  limiterLvlX = analogTarget - limiterOffset
 | |
|     //  limiterLvl  = targetLevelDbfs + limiterOffset/compRatio
 | |
|     limiterLvlX = analogTarget - limiterOffset;
 | |
|     limiterIdx = 2
 | |
|             + WebRtcSpl_DivW32W16ResW16(WEBRTC_SPL_LSHIFT_W32((int32_t)limiterLvlX, 13),
 | |
|                                         (kLog10_2 / 2));
 | |
|     tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
 | |
|     limiterLvl = targetLevelDbfs + tmp16no1;
 | |
| 
 | |
|     // Calculate (through table lookup):
 | |
|     //  constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
 | |
|     constMaxGain = kGenFuncTable[diffGain]; // in Q8
 | |
| 
 | |
|     // Calculate a parameter used to approximate the fractional part of 2^x with a
 | |
|     // piecewise linear function in Q14:
 | |
|     //  constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
 | |
|     constLinApprox = 22817; // in Q14
 | |
| 
 | |
|     // Calculate a denominator used in the exponential part to convert from dB to linear scale:
 | |
|     //  den = 20*constMaxGain (in Q8)
 | |
|     den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
 | |
| 
 | |
|     for (i = 0; i < 32; i++)
 | |
|     {
 | |
|         // Calculate scaled input level (compressor):
 | |
|         //  inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
 | |
|         tmp16 = (int16_t)WEBRTC_SPL_MUL_16_16(kCompRatio - 1, i - 1); // Q0
 | |
|         tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
 | |
|         inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
 | |
| 
 | |
|         // Calculate diffGain-inLevel, to map using the genFuncTable
 | |
|         inLevel = WEBRTC_SPL_LSHIFT_W32((int32_t)diffGain, 14) - inLevel; // Q14
 | |
| 
 | |
|         // Make calculations on abs(inLevel) and compensate for the sign afterwards.
 | |
|         absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
 | |
| 
 | |
|         // LUT with interpolation
 | |
|         intPart = (uint16_t)WEBRTC_SPL_RSHIFT_U32(absInLevel, 14);
 | |
|         fracPart = (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
 | |
|         tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
 | |
|         tmpU32no1 = WEBRTC_SPL_UMUL_16_16(tmpU16, fracPart); // Q22
 | |
|         tmpU32no1 += WEBRTC_SPL_LSHIFT_U32((uint32_t)kGenFuncTable[intPart], 14); // Q22
 | |
|         logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 8); // Q14
 | |
|         // Compensate for negative exponent using the relation:
 | |
|         //  log2(1 + 2^-x) = log2(1 + 2^x) - x
 | |
|         if (inLevel < 0)
 | |
|         {
 | |
|             zeros = WebRtcSpl_NormU32(absInLevel);
 | |
|             zerosScale = 0;
 | |
|             if (zeros < 15)
 | |
|             {
 | |
|                 // Not enough space for multiplication
 | |
|                 tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(absInLevel, 15 - zeros); // Q(zeros-1)
 | |
|                 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
 | |
|                 if (zeros < 9)
 | |
|                 {
 | |
|                     tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 9 - zeros); // Q(zeros+13)
 | |
|                     zerosScale = 9 - zeros;
 | |
|                 } else
 | |
|                 {
 | |
|                     tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, zeros - 9); // Q22
 | |
|                 }
 | |
|             } else
 | |
|             {
 | |
|                 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
 | |
|                 tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 6); // Q22
 | |
|             }
 | |
|             logApprox = 0;
 | |
|             if (tmpU32no2 < tmpU32no1)
 | |
|             {
 | |
|                 logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1 - tmpU32no2, 8 - zerosScale); //Q14
 | |
|             }
 | |
|         }
 | |
|         numFIX = WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_U16(maxGain, constMaxGain), 6); // Q14
 | |
|         numFIX -= (int32_t)logApprox * diffGain;  // Q14
 | |
| 
 | |
|         // Calculate ratio
 | |
|         // Shift |numFIX| as much as possible.
 | |
|         // Ensure we avoid wrap-around in |den| as well.
 | |
|         if (numFIX > (den >> 8))  // |den| is Q8.
 | |
|         {
 | |
|             zeros = WebRtcSpl_NormW32(numFIX);
 | |
|         } else
 | |
|         {
 | |
|             zeros = WebRtcSpl_NormW32(den) + 8;
 | |
|         }
 | |
|         numFIX = WEBRTC_SPL_LSHIFT_W32(numFIX, zeros); // Q(14+zeros)
 | |
| 
 | |
|         // Shift den so we end up in Qy1
 | |
|         tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
 | |
|         if (numFIX < 0)
 | |
|         {
 | |
|             numFIX -= WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
 | |
|         } else
 | |
|         {
 | |
|             numFIX += WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
 | |
|         }
 | |
|         y32 = WEBRTC_SPL_DIV(numFIX, tmp32no1); // in Q14
 | |
|         if (limiterEnable && (i < limiterIdx))
 | |
|         {
 | |
|             tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
 | |
|             tmp32 -= WEBRTC_SPL_LSHIFT_W32(limiterLvl, 14); // Q14
 | |
|             y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
 | |
|         }
 | |
|         if (y32 > 39000)
 | |
|         {
 | |
|             tmp32 = WEBRTC_SPL_MUL(y32 >> 1, kLog10) + 4096; // in Q27
 | |
|             tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 13); // in Q14
 | |
|         } else
 | |
|         {
 | |
|             tmp32 = WEBRTC_SPL_MUL(y32, kLog10) + 8192; // in Q28
 | |
|             tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 14); // in Q14
 | |
|         }
 | |
|         tmp32 += WEBRTC_SPL_LSHIFT_W32(16, 14); // in Q14 (Make sure final output is in Q16)
 | |
| 
 | |
|         // Calculate power
 | |
|         if (tmp32 > 0)
 | |
|         {
 | |
|             intPart = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 14);
 | |
|             fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
 | |
|             if (WEBRTC_SPL_RSHIFT_W32(fracPart, 13))
 | |
|             {
 | |
|                 tmp16 = WEBRTC_SPL_LSHIFT_W16(2, 14) - constLinApprox;
 | |
|                 tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - fracPart;
 | |
|                 tmp32no2 *= tmp16;
 | |
|                 tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
 | |
|                 tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - tmp32no2;
 | |
|             } else
 | |
|             {
 | |
|                 tmp16 = constLinApprox - WEBRTC_SPL_LSHIFT_W16(1, 14);
 | |
|                 tmp32no2 = fracPart * tmp16;
 | |
|                 tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
 | |
|             }
 | |
|             fracPart = (uint16_t)tmp32no2;
 | |
|             gainTable[i] = WEBRTC_SPL_LSHIFT_W32(1, intPart)
 | |
|                     + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
 | |
|         } else
 | |
|         {
 | |
|             gainTable[i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t WebRtcAgc_InitDigital(DigitalAgc_t *stt, int16_t agcMode)
 | |
| {
 | |
| 
 | |
|     if (agcMode == kAgcModeFixedDigital)
 | |
|     {
 | |
|         // start at minimum to find correct gain faster
 | |
|         stt->capacitorSlow = 0;
 | |
|     } else
 | |
|     {
 | |
|         // start out with 0 dB gain
 | |
|         stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
 | |
|     }
 | |
|     stt->capacitorFast = 0;
 | |
|     stt->gain = 65536;
 | |
|     stt->gatePrevious = 0;
 | |
|     stt->agcMode = agcMode;
 | |
| #ifdef AGC_DEBUG
 | |
|     stt->frameCounter = 0;
 | |
| #endif
 | |
| 
 | |
|     // initialize VADs
 | |
|     WebRtcAgc_InitVad(&stt->vadNearend);
 | |
|     WebRtcAgc_InitVad(&stt->vadFarend);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc_t *stt, const int16_t *in_far,
 | |
|                                      int16_t nrSamples)
 | |
| {
 | |
|     assert(stt != NULL);
 | |
|     // VAD for far end
 | |
|     WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t WebRtcAgc_ProcessDigital(DigitalAgc_t *stt, const int16_t *in_near,
 | |
|                                  const int16_t *in_near_H, int16_t *out,
 | |
|                                  int16_t *out_H, uint32_t FS,
 | |
|                                  int16_t lowlevelSignal)
 | |
| {
 | |
|     // array for gains (one value per ms, incl start & end)
 | |
|     int32_t gains[11];
 | |
| 
 | |
|     int32_t out_tmp, tmp32;
 | |
|     int32_t env[10];
 | |
|     int32_t nrg, max_nrg;
 | |
|     int32_t cur_level;
 | |
|     int32_t gain32, delta;
 | |
|     int16_t logratio;
 | |
|     int16_t lower_thr, upper_thr;
 | |
|     int16_t zeros = 0, zeros_fast, frac = 0;
 | |
|     int16_t decay;
 | |
|     int16_t gate, gain_adj;
 | |
|     int16_t k, n;
 | |
|     int16_t L, L2; // samples/subframe
 | |
| 
 | |
|     // determine number of samples per ms
 | |
|     if (FS == 8000)
 | |
|     {
 | |
|         L = 8;
 | |
|         L2 = 3;
 | |
|     } else if (FS == 16000)
 | |
|     {
 | |
|         L = 16;
 | |
|         L2 = 4;
 | |
|     } else if (FS == 32000)
 | |
|     {
 | |
|         L = 16;
 | |
|         L2 = 4;
 | |
|     } else
 | |
|     {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     // TODO(andrew): again, we don't need input and output pointers...
 | |
|     if (in_near != out)
 | |
|     {
 | |
|         // Only needed if they don't already point to the same place.
 | |
|         memcpy(out, in_near, 10 * L * sizeof(int16_t));
 | |
|     }
 | |
|     if (FS == 32000)
 | |
|     {
 | |
|         if (in_near_H != out_H)
 | |
|         {
 | |
|             memcpy(out_H, in_near_H, 10 * L * sizeof(int16_t));
 | |
|         }
 | |
|     }
 | |
|     // VAD for near end
 | |
|     logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out, L * 10);
 | |
| 
 | |
|     // Account for far end VAD
 | |
|     if (stt->vadFarend.counter > 10)
 | |
|     {
 | |
|         tmp32 = WEBRTC_SPL_MUL_16_16(3, logratio);
 | |
|         logratio = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32 - stt->vadFarend.logRatio, 2);
 | |
|     }
 | |
| 
 | |
|     // Determine decay factor depending on VAD
 | |
|     //  upper_thr = 1.0f;
 | |
|     //  lower_thr = 0.25f;
 | |
|     upper_thr = 1024; // Q10
 | |
|     lower_thr = 0; // Q10
 | |
|     if (logratio > upper_thr)
 | |
|     {
 | |
|         // decay = -2^17 / DecayTime;  ->  -65
 | |
|         decay = -65;
 | |
|     } else if (logratio < lower_thr)
 | |
|     {
 | |
|         decay = 0;
 | |
|     } else
 | |
|     {
 | |
|         // decay = (int16_t)(((lower_thr - logratio)
 | |
|         //       * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
 | |
|         // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr))  ->  65
 | |
|         tmp32 = WEBRTC_SPL_MUL_16_16((lower_thr - logratio), 65);
 | |
|         decay = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 10);
 | |
|     }
 | |
| 
 | |
|     // adjust decay factor for long silence (detected as low standard deviation)
 | |
|     // This is only done in the adaptive modes
 | |
|     if (stt->agcMode != kAgcModeFixedDigital)
 | |
|     {
 | |
|         if (stt->vadNearend.stdLongTerm < 4000)
 | |
|         {
 | |
|             decay = 0;
 | |
|         } else if (stt->vadNearend.stdLongTerm < 8096)
 | |
|         {
 | |
|             // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
 | |
|             tmp32 = WEBRTC_SPL_MUL_16_16((stt->vadNearend.stdLongTerm - 4000), decay);
 | |
|             decay = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
 | |
|         }
 | |
| 
 | |
|         if (lowlevelSignal != 0)
 | |
|         {
 | |
|             decay = 0;
 | |
|         }
 | |
|     }
 | |
| #ifdef AGC_DEBUG
 | |
|     stt->frameCounter++;
 | |
|     fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100, logratio, decay, stt->vadNearend.stdLongTerm);
 | |
| #endif
 | |
|     // Find max amplitude per sub frame
 | |
|     // iterate over sub frames
 | |
|     for (k = 0; k < 10; k++)
 | |
|     {
 | |
|         // iterate over samples
 | |
|         max_nrg = 0;
 | |
|         for (n = 0; n < L; n++)
 | |
|         {
 | |
|             nrg = WEBRTC_SPL_MUL_16_16(out[k * L + n], out[k * L + n]);
 | |
|             if (nrg > max_nrg)
 | |
|             {
 | |
|                 max_nrg = nrg;
 | |
|             }
 | |
|         }
 | |
|         env[k] = max_nrg;
 | |
|     }
 | |
| 
 | |
|     // Calculate gain per sub frame
 | |
|     gains[0] = stt->gain;
 | |
|     for (k = 0; k < 10; k++)
 | |
|     {
 | |
|         // Fast envelope follower
 | |
|         //  decay time = -131000 / -1000 = 131 (ms)
 | |
|         stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
 | |
|         if (env[k] > stt->capacitorFast)
 | |
|         {
 | |
|             stt->capacitorFast = env[k];
 | |
|         }
 | |
|         // Slow envelope follower
 | |
|         if (env[k] > stt->capacitorSlow)
 | |
|         {
 | |
|             // increase capacitorSlow
 | |
|             stt->capacitorSlow
 | |
|                     = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
 | |
|         } else
 | |
|         {
 | |
|             // decrease capacitorSlow
 | |
|             stt->capacitorSlow
 | |
|                     = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
 | |
|         }
 | |
| 
 | |
|         // use maximum of both capacitors as current level
 | |
|         if (stt->capacitorFast > stt->capacitorSlow)
 | |
|         {
 | |
|             cur_level = stt->capacitorFast;
 | |
|         } else
 | |
|         {
 | |
|             cur_level = stt->capacitorSlow;
 | |
|         }
 | |
|         // Translate signal level into gain, using a piecewise linear approximation
 | |
|         // find number of leading zeros
 | |
|         zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
 | |
|         if (cur_level == 0)
 | |
|         {
 | |
|             zeros = 31;
 | |
|         }
 | |
|         tmp32 = (WEBRTC_SPL_LSHIFT_W32(cur_level, zeros) & 0x7FFFFFFF);
 | |
|         frac = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 19); // Q12
 | |
|         tmp32 = WEBRTC_SPL_MUL((stt->gainTable[zeros-1] - stt->gainTable[zeros]), frac);
 | |
|         gains[k + 1] = stt->gainTable[zeros] + WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
 | |
| #ifdef AGC_DEBUG
 | |
|         if (k == 0)
 | |
|         {
 | |
|             fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level, stt->capacitorFast, stt->capacitorSlow, zeros);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     // Gate processing (lower gain during absence of speech)
 | |
|     zeros = WEBRTC_SPL_LSHIFT_W16(zeros, 9) - WEBRTC_SPL_RSHIFT_W16(frac, 3);
 | |
|     // find number of leading zeros
 | |
|     zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
 | |
|     if (stt->capacitorFast == 0)
 | |
|     {
 | |
|         zeros_fast = 31;
 | |
|     }
 | |
|     tmp32 = (WEBRTC_SPL_LSHIFT_W32(stt->capacitorFast, zeros_fast) & 0x7FFFFFFF);
 | |
|     zeros_fast = WEBRTC_SPL_LSHIFT_W16(zeros_fast, 9);
 | |
|     zeros_fast -= (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 22);
 | |
| 
 | |
|     gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
 | |
| 
 | |
|     if (gate < 0)
 | |
|     {
 | |
|         stt->gatePrevious = 0;
 | |
|     } else
 | |
|     {
 | |
|         tmp32 = WEBRTC_SPL_MUL_16_16(stt->gatePrevious, 7);
 | |
|         gate = (int16_t)WEBRTC_SPL_RSHIFT_W32((int32_t)gate + tmp32, 3);
 | |
|         stt->gatePrevious = gate;
 | |
|     }
 | |
|     // gate < 0     -> no gate
 | |
|     // gate > 2500  -> max gate
 | |
|     if (gate > 0)
 | |
|     {
 | |
|         if (gate < 2500)
 | |
|         {
 | |
|             gain_adj = WEBRTC_SPL_RSHIFT_W16(2500 - gate, 5);
 | |
|         } else
 | |
|         {
 | |
|             gain_adj = 0;
 | |
|         }
 | |
|         for (k = 0; k < 10; k++)
 | |
|         {
 | |
|             if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
 | |
|             {
 | |
|                 // To prevent wraparound
 | |
|                 tmp32 = WEBRTC_SPL_RSHIFT_W32((gains[k+1] - stt->gainTable[0]), 8);
 | |
|                 tmp32 = WEBRTC_SPL_MUL(tmp32, (178 + gain_adj));
 | |
|             } else
 | |
|             {
 | |
|                 tmp32 = WEBRTC_SPL_MUL((gains[k+1] - stt->gainTable[0]), (178 + gain_adj));
 | |
|                 tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 8);
 | |
|             }
 | |
|             gains[k + 1] = stt->gainTable[0] + tmp32;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Limit gain to avoid overload distortion
 | |
|     for (k = 0; k < 10; k++)
 | |
|     {
 | |
|         // To prevent wrap around
 | |
|         zeros = 10;
 | |
|         if (gains[k + 1] > 47453132)
 | |
|         {
 | |
|             zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
 | |
|         }
 | |
|         gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
 | |
|         gain32 = WEBRTC_SPL_MUL(gain32, gain32);
 | |
|         // check for overflow
 | |
|         while (AGC_MUL32(WEBRTC_SPL_RSHIFT_W32(env[k], 12) + 1, gain32)
 | |
|                 > WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10)))
 | |
|         {
 | |
|             // multiply by 253/256 ==> -0.1 dB
 | |
|             if (gains[k + 1] > 8388607)
 | |
|             {
 | |
|                 // Prevent wrap around
 | |
|                 gains[k + 1] = WEBRTC_SPL_MUL(WEBRTC_SPL_RSHIFT_W32(gains[k+1], 8), 253);
 | |
|             } else
 | |
|             {
 | |
|                 gains[k + 1] = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(gains[k+1], 253), 8);
 | |
|             }
 | |
|             gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
 | |
|             gain32 = WEBRTC_SPL_MUL(gain32, gain32);
 | |
|         }
 | |
|     }
 | |
|     // gain reductions should be done 1 ms earlier than gain increases
 | |
|     for (k = 1; k < 10; k++)
 | |
|     {
 | |
|         if (gains[k] > gains[k + 1])
 | |
|         {
 | |
|             gains[k] = gains[k + 1];
 | |
|         }
 | |
|     }
 | |
|     // save start gain for next frame
 | |
|     stt->gain = gains[10];
 | |
| 
 | |
|     // Apply gain
 | |
|     // handle first sub frame separately
 | |
|     delta = WEBRTC_SPL_LSHIFT_W32(gains[1] - gains[0], (4 - L2));
 | |
|     gain32 = WEBRTC_SPL_LSHIFT_W32(gains[0], 4);
 | |
|     // iterate over samples
 | |
|     for (n = 0; n < L; n++)
 | |
|     {
 | |
|         // For lower band
 | |
|         tmp32 = WEBRTC_SPL_MUL((int32_t)out[n], WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
 | |
|         out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
 | |
|         if (out_tmp > 4095)
 | |
|         {
 | |
|             out[n] = (int16_t)32767;
 | |
|         } else if (out_tmp < -4096)
 | |
|         {
 | |
|             out[n] = (int16_t)-32768;
 | |
|         } else
 | |
|         {
 | |
|             tmp32 = WEBRTC_SPL_MUL((int32_t)out[n], WEBRTC_SPL_RSHIFT_W32(gain32, 4));
 | |
|             out[n] = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
 | |
|         }
 | |
|         // For higher band
 | |
|         if (FS == 32000)
 | |
|         {
 | |
|             tmp32 = WEBRTC_SPL_MUL((int32_t)out_H[n],
 | |
|                                    WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
 | |
|             out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
 | |
|             if (out_tmp > 4095)
 | |
|             {
 | |
|                 out_H[n] = (int16_t)32767;
 | |
|             } else if (out_tmp < -4096)
 | |
|             {
 | |
|                 out_H[n] = (int16_t)-32768;
 | |
|             } else
 | |
|             {
 | |
|                 tmp32 = WEBRTC_SPL_MUL((int32_t)out_H[n],
 | |
|                                        WEBRTC_SPL_RSHIFT_W32(gain32, 4));
 | |
|                 out_H[n] = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
 | |
|             }
 | |
|         }
 | |
|         //
 | |
| 
 | |
|         gain32 += delta;
 | |
|     }
 | |
|     // iterate over subframes
 | |
|     for (k = 1; k < 10; k++)
 | |
|     {
 | |
|         delta = WEBRTC_SPL_LSHIFT_W32(gains[k+1] - gains[k], (4 - L2));
 | |
|         gain32 = WEBRTC_SPL_LSHIFT_W32(gains[k], 4);
 | |
|         // iterate over samples
 | |
|         for (n = 0; n < L; n++)
 | |
|         {
 | |
|             // For lower band
 | |
|             tmp32 = WEBRTC_SPL_MUL((int32_t)out[k * L + n],
 | |
|                                    WEBRTC_SPL_RSHIFT_W32(gain32, 4));
 | |
|             out[k * L + n] = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
 | |
|             // For higher band
 | |
|             if (FS == 32000)
 | |
|             {
 | |
|                 tmp32 = WEBRTC_SPL_MUL((int32_t)out_H[k * L + n],
 | |
|                                        WEBRTC_SPL_RSHIFT_W32(gain32, 4));
 | |
|                 out_H[k * L + n] = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
 | |
|             }
 | |
|             gain32 += delta;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void WebRtcAgc_InitVad(AgcVad_t *state)
 | |
| {
 | |
|     int16_t k;
 | |
| 
 | |
|     state->HPstate = 0; // state of high pass filter
 | |
|     state->logRatio = 0; // log( P(active) / P(inactive) )
 | |
|     // average input level (Q10)
 | |
|     state->meanLongTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
 | |
| 
 | |
|     // variance of input level (Q8)
 | |
|     state->varianceLongTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
 | |
| 
 | |
|     state->stdLongTerm = 0; // standard deviation of input level in dB
 | |
|     // short-term average input level (Q10)
 | |
|     state->meanShortTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
 | |
| 
 | |
|     // short-term variance of input level (Q8)
 | |
|     state->varianceShortTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
 | |
| 
 | |
|     state->stdShortTerm = 0; // short-term standard deviation of input level in dB
 | |
|     state->counter = 3; // counts updates
 | |
|     for (k = 0; k < 8; k++)
 | |
|     {
 | |
|         // downsampling filter
 | |
|         state->downState[k] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int16_t WebRtcAgc_ProcessVad(AgcVad_t *state, // (i) VAD state
 | |
|                                    const int16_t *in, // (i) Speech signal
 | |
|                                    int16_t nrSamples) // (i) number of samples
 | |
| {
 | |
|     int32_t out, nrg, tmp32, tmp32b;
 | |
|     uint16_t tmpU16;
 | |
|     int16_t k, subfr, tmp16;
 | |
|     int16_t buf1[8];
 | |
|     int16_t buf2[4];
 | |
|     int16_t HPstate;
 | |
|     int16_t zeros, dB;
 | |
| 
 | |
|     // process in 10 sub frames of 1 ms (to save on memory)
 | |
|     nrg = 0;
 | |
|     HPstate = state->HPstate;
 | |
|     for (subfr = 0; subfr < 10; subfr++)
 | |
|     {
 | |
|         // downsample to 4 kHz
 | |
|         if (nrSamples == 160)
 | |
|         {
 | |
|             for (k = 0; k < 8; k++)
 | |
|             {
 | |
|                 tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
 | |
|                 tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 1);
 | |
|                 buf1[k] = (int16_t)tmp32;
 | |
|             }
 | |
|             in += 16;
 | |
| 
 | |
|             WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
 | |
|         } else
 | |
|         {
 | |
|             WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
 | |
|             in += 8;
 | |
|         }
 | |
| 
 | |
|         // high pass filter and compute energy
 | |
|         for (k = 0; k < 4; k++)
 | |
|         {
 | |
|             out = buf2[k] + HPstate;
 | |
|             tmp32 = WEBRTC_SPL_MUL(600, out);
 | |
|             HPstate = (int16_t)(WEBRTC_SPL_RSHIFT_W32(tmp32, 10) - buf2[k]);
 | |
|             tmp32 = WEBRTC_SPL_MUL(out, out);
 | |
|             nrg += WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
 | |
|         }
 | |
|     }
 | |
|     state->HPstate = HPstate;
 | |
| 
 | |
|     // find number of leading zeros
 | |
|     if (!(0xFFFF0000 & nrg))
 | |
|     {
 | |
|         zeros = 16;
 | |
|     } else
 | |
|     {
 | |
|         zeros = 0;
 | |
|     }
 | |
|     if (!(0xFF000000 & (nrg << zeros)))
 | |
|     {
 | |
|         zeros += 8;
 | |
|     }
 | |
|     if (!(0xF0000000 & (nrg << zeros)))
 | |
|     {
 | |
|         zeros += 4;
 | |
|     }
 | |
|     if (!(0xC0000000 & (nrg << zeros)))
 | |
|     {
 | |
|         zeros += 2;
 | |
|     }
 | |
|     if (!(0x80000000 & (nrg << zeros)))
 | |
|     {
 | |
|         zeros += 1;
 | |
|     }
 | |
| 
 | |
|     // energy level (range {-32..30}) (Q10)
 | |
|     dB = WEBRTC_SPL_LSHIFT_W16(15 - zeros, 11);
 | |
| 
 | |
|     // Update statistics
 | |
| 
 | |
|     if (state->counter < kAvgDecayTime)
 | |
|     {
 | |
|         // decay time = AvgDecTime * 10 ms
 | |
|         state->counter++;
 | |
|     }
 | |
| 
 | |
|     // update short-term estimate of mean energy level (Q10)
 | |
|     tmp32 = (WEBRTC_SPL_MUL_16_16(state->meanShortTerm, 15) + (int32_t)dB);
 | |
|     state->meanShortTerm = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
 | |
| 
 | |
|     // update short-term estimate of variance in energy level (Q8)
 | |
|     tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
 | |
|     tmp32 += WEBRTC_SPL_MUL(state->varianceShortTerm, 15);
 | |
|     state->varianceShortTerm = WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
 | |
| 
 | |
|     // update short-term estimate of standard deviation in energy level (Q10)
 | |
|     tmp32 = WEBRTC_SPL_MUL_16_16(state->meanShortTerm, state->meanShortTerm);
 | |
|     tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceShortTerm, 12) - tmp32;
 | |
|     state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
 | |
| 
 | |
|     // update long-term estimate of mean energy level (Q10)
 | |
|     tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->counter) + (int32_t)dB;
 | |
|     state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(
 | |
|         tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
 | |
| 
 | |
|     // update long-term estimate of variance in energy level (Q8)
 | |
|     tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
 | |
|     tmp32 += WEBRTC_SPL_MUL(state->varianceLongTerm, state->counter);
 | |
|     state->varianceLongTerm = WebRtcSpl_DivW32W16(
 | |
|         tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
 | |
| 
 | |
|     // update long-term estimate of standard deviation in energy level (Q10)
 | |
|     tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->meanLongTerm);
 | |
|     tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceLongTerm, 12) - tmp32;
 | |
|     state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
 | |
| 
 | |
|     // update voice activity measure (Q10)
 | |
|     tmp16 = WEBRTC_SPL_LSHIFT_W16(3, 12);
 | |
|     tmp32 = WEBRTC_SPL_MUL_16_16(tmp16, (dB - state->meanLongTerm));
 | |
|     tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
 | |
|     tmpU16 = (13 << 12);
 | |
|     tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
 | |
|     tmp32 += WEBRTC_SPL_RSHIFT_W32(tmp32b, 10);
 | |
| 
 | |
|     state->logRatio = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
 | |
| 
 | |
|     // limit
 | |
|     if (state->logRatio > 2048)
 | |
|     {
 | |
|         state->logRatio = 2048;
 | |
|     }
 | |
|     if (state->logRatio < -2048)
 | |
|     {
 | |
|         state->logRatio = -2048;
 | |
|     }
 | |
| 
 | |
|     return state->logRatio; // Q10
 | |
| }
 |