You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			260 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
			
		
		
	
	
			260 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
| /*
 | |
|  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This file contains the function WebRtcSpl_LevinsonDurbin().
 | |
|  * The description header can be found in signal_processing_library.h
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
 | |
| 
 | |
| #define SPL_LEVINSON_MAXORDER 20
 | |
| 
 | |
| int16_t WebRtcSpl_LevinsonDurbin(int32_t *R, int16_t *A, int16_t *K,
 | |
|                                  int16_t order)
 | |
| {
 | |
|     int16_t i, j;
 | |
|     // Auto-correlation coefficients in high precision
 | |
|     int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
 | |
|     // LPC coefficients in high precision
 | |
|     int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
 | |
|     // LPC coefficients for next iteration
 | |
|     int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
 | |
|     // Reflection coefficient in high precision
 | |
|     int16_t K_hi, K_low;
 | |
|     // Prediction gain Alpha in high precision and with scale factor
 | |
|     int16_t Alpha_hi, Alpha_low, Alpha_exp;
 | |
|     int16_t tmp_hi, tmp_low;
 | |
|     int32_t temp1W32, temp2W32, temp3W32;
 | |
|     int16_t norm;
 | |
| 
 | |
|     // Normalize the autocorrelation R[0]...R[order+1]
 | |
| 
 | |
|     norm = WebRtcSpl_NormW32(R[0]);
 | |
| 
 | |
|     for (i = order; i >= 0; i--)
 | |
|     {
 | |
|         temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm);
 | |
|         // Put R in hi and low format
 | |
|         R_hi[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|         R_low[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|                 - WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)), 1);
 | |
|     }
 | |
| 
 | |
|     // K = A[1] = -R[1] / R[0]
 | |
| 
 | |
|     temp2W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[1],16)
 | |
|             + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[1],1); // R[1] in Q31
 | |
|     temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
 | |
|     temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
 | |
|     // Put back the sign on R[1]
 | |
|     if (temp2W32 > 0)
 | |
|     {
 | |
|         temp1W32 = -temp1W32;
 | |
|     }
 | |
| 
 | |
|     // Put K in hi and low format
 | |
|     K_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|     K_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|             - WEBRTC_SPL_LSHIFT_W32((int32_t)K_hi, 16)), 1);
 | |
| 
 | |
|     // Store first reflection coefficient
 | |
|     K[0] = K_hi;
 | |
| 
 | |
|     temp1W32 = WEBRTC_SPL_RSHIFT_W32(temp1W32, 4); // A[1] in Q27
 | |
| 
 | |
|     // Put A[1] in hi and low format
 | |
|     A_hi[1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|     A_low[1] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|             - WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[1], 16)), 1);
 | |
| 
 | |
|     // Alpha = R[0] * (1-K^2)
 | |
| 
 | |
|     temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14) + WEBRTC_SPL_MUL_16_16(K_hi, K_hi))
 | |
|             << 1); // temp1W32 = k^2 in Q31
 | |
| 
 | |
|     temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
 | |
|     temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
 | |
| 
 | |
|     // Store temp1W32 = 1 - K[0]*K[0] on hi and low format
 | |
|     tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|     tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|             - WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
 | |
| 
 | |
|     // Calculate Alpha in Q31
 | |
|     temp1W32 = ((WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_hi)
 | |
|             + (WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_low) >> 15)
 | |
|             + (WEBRTC_SPL_MUL_16_16(R_low[0], tmp_hi) >> 15)) << 1);
 | |
| 
 | |
|     // Normalize Alpha and put it in hi and low format
 | |
| 
 | |
|     Alpha_exp = WebRtcSpl_NormW32(temp1W32);
 | |
|     temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
 | |
|     Alpha_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|     Alpha_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|             - WEBRTC_SPL_LSHIFT_W32((int32_t)Alpha_hi, 16)), 1);
 | |
| 
 | |
|     // Perform the iterative calculations in the Levinson-Durbin algorithm
 | |
| 
 | |
|     for (i = 2; i <= order; i++)
 | |
|     {
 | |
|         /*                    ----
 | |
|          temp1W32 =  R[i] + > R[j]*A[i-j]
 | |
|          /
 | |
|          ----
 | |
|          j=1..i-1
 | |
|          */
 | |
| 
 | |
|         temp1W32 = 0;
 | |
| 
 | |
|         for (j = 1; j < i; j++)
 | |
|         {
 | |
|             // temp1W32 is in Q31
 | |
|             temp1W32 += ((WEBRTC_SPL_MUL_16_16(R_hi[j], A_hi[i-j]) << 1)
 | |
|                     + (((WEBRTC_SPL_MUL_16_16(R_hi[j], A_low[i-j]) >> 15)
 | |
|                             + (WEBRTC_SPL_MUL_16_16(R_low[j], A_hi[i-j]) >> 15)) << 1));
 | |
|         }
 | |
| 
 | |
|         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4);
 | |
|         temp1W32 += (WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)
 | |
|                 + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1));
 | |
| 
 | |
|         // K = -temp1W32 / Alpha
 | |
|         temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
 | |
|         temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
 | |
| 
 | |
|         // Put the sign of temp1W32 back again
 | |
|         if (temp1W32 > 0)
 | |
|         {
 | |
|             temp3W32 = -temp3W32;
 | |
|         }
 | |
| 
 | |
|         // Use the Alpha shifts from earlier to de-normalize
 | |
|         norm = WebRtcSpl_NormW32(temp3W32);
 | |
|         if ((Alpha_exp <= norm) || (temp3W32 == 0))
 | |
|         {
 | |
|             temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp);
 | |
|         } else
 | |
|         {
 | |
|             if (temp3W32 > 0)
 | |
|             {
 | |
|                 temp3W32 = (int32_t)0x7fffffffL;
 | |
|             } else
 | |
|             {
 | |
|                 temp3W32 = (int32_t)0x80000000L;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Put K on hi and low format
 | |
|         K_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
 | |
|         K_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp3W32
 | |
|                 - WEBRTC_SPL_LSHIFT_W32((int32_t)K_hi, 16)), 1);
 | |
| 
 | |
|         // Store Reflection coefficient in Q15
 | |
|         K[i - 1] = K_hi;
 | |
| 
 | |
|         // Test for unstable filter.
 | |
|         // If unstable return 0 and let the user decide what to do in that case
 | |
| 
 | |
|         if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750)
 | |
|         {
 | |
|             return 0; // Unstable filter
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          Compute updated LPC coefficient: Anew[i]
 | |
|          Anew[j]= A[j] + K*A[i-j]   for j=1..i-1
 | |
|          Anew[i]= K
 | |
|          */
 | |
| 
 | |
|         for (j = 1; j < i; j++)
 | |
|         {
 | |
|             // temp1W32 = A[j] in Q27
 | |
|             temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[j],16)
 | |
|                     + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1);
 | |
| 
 | |
|             // temp1W32 += K*A[i-j] in Q27
 | |
|             temp1W32 += ((WEBRTC_SPL_MUL_16_16(K_hi, A_hi[i-j])
 | |
|                     + (WEBRTC_SPL_MUL_16_16(K_hi, A_low[i-j]) >> 15)
 | |
|                     + (WEBRTC_SPL_MUL_16_16(K_low, A_hi[i-j]) >> 15)) << 1);
 | |
| 
 | |
|             // Put Anew in hi and low format
 | |
|             A_upd_hi[j] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|             A_upd_low[j] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|                     - WEBRTC_SPL_LSHIFT_W32((int32_t)A_upd_hi[j], 16)), 1);
 | |
|         }
 | |
| 
 | |
|         // temp3W32 = K in Q27 (Convert from Q31 to Q27)
 | |
|         temp3W32 = WEBRTC_SPL_RSHIFT_W32(temp3W32, 4);
 | |
| 
 | |
|         // Store Anew in hi and low format
 | |
|         A_upd_hi[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
 | |
|         A_upd_low[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp3W32
 | |
|                 - WEBRTC_SPL_LSHIFT_W32((int32_t)A_upd_hi[i], 16)), 1);
 | |
| 
 | |
|         // Alpha = Alpha * (1-K^2)
 | |
| 
 | |
|         temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14)
 | |
|                 + WEBRTC_SPL_MUL_16_16(K_hi, K_hi)) << 1); // K*K in Q31
 | |
| 
 | |
|         temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
 | |
|         temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K  in Q31
 | |
| 
 | |
|         // Convert 1- K^2 in hi and low format
 | |
|         tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|         tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|                 - WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
 | |
| 
 | |
|         // Calculate Alpha = Alpha * (1-K^2) in Q31
 | |
|         temp1W32 = ((WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_hi)
 | |
|                 + (WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_low) >> 15)
 | |
|                 + (WEBRTC_SPL_MUL_16_16(Alpha_low, tmp_hi) >> 15)) << 1);
 | |
| 
 | |
|         // Normalize Alpha and store it on hi and low format
 | |
| 
 | |
|         norm = WebRtcSpl_NormW32(temp1W32);
 | |
|         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
 | |
| 
 | |
|         Alpha_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
 | |
|         Alpha_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
 | |
|                 - WEBRTC_SPL_LSHIFT_W32((int32_t)Alpha_hi, 16)), 1);
 | |
| 
 | |
|         // Update the total normalization of Alpha
 | |
|         Alpha_exp = Alpha_exp + norm;
 | |
| 
 | |
|         // Update A[]
 | |
| 
 | |
|         for (j = 1; j <= i; j++)
 | |
|         {
 | |
|             A_hi[j] = A_upd_hi[j];
 | |
|             A_low[j] = A_upd_low[j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      Set A[0] to 1.0 and store the A[i] i=1...order in Q12
 | |
|      (Convert from Q27 and use rounding)
 | |
|      */
 | |
| 
 | |
|     A[0] = 4096;
 | |
| 
 | |
|     for (i = 1; i <= order; i++)
 | |
|     {
 | |
|         // temp1W32 in Q27
 | |
|         temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[i], 16)
 | |
|                 + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1);
 | |
|         // Round and store upper word
 | |
|         A[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32<<1)+(int32_t)32768, 16);
 | |
|     }
 | |
|     return 1; // Stable filters
 | |
| }
 |