You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			735 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
			
		
		
	
	
			735 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
| /* Copyright 2008, Google Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are
 | |
|  * met:
 | |
|  *
 | |
|  *     * Redistributions of source code must retain the above copyright
 | |
|  * notice, this list of conditions and the following disclaimer.
 | |
|  *     * Redistributions in binary form must reproduce the above
 | |
|  * copyright notice, this list of conditions and the following disclaimer
 | |
|  * in the documentation and/or other materials provided with the
 | |
|  * distribution.
 | |
|  *     * Neither the name of Google Inc. nor the names of its
 | |
|  * contributors may be used to endorse or promote products derived from
 | |
|  * this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  * curve25519-donna: Curve25519 elliptic curve, public key function
 | |
|  *
 | |
|  * http://code.google.com/p/curve25519-donna/
 | |
|  *
 | |
|  * Adam Langley <agl@imperialviolet.org>
 | |
|  *
 | |
|  * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
 | |
|  *
 | |
|  * More information about curve25519 can be found here
 | |
|  *   http://cr.yp.to/ecdh.html
 | |
|  *
 | |
|  * djb's sample implementation of curve25519 is written in a special assembly
 | |
|  * language called qhasm and uses the floating point registers.
 | |
|  *
 | |
|  * This is, almost, a clean room reimplementation from the curve25519 paper. It
 | |
|  * uses many of the tricks described therein. Only the crecip function is taken
 | |
|  * from the sample implementation.
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include <stdint.h>
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #define inline __inline
 | |
| #endif
 | |
| 
 | |
| typedef uint8_t u8;
 | |
| typedef int32_t s32;
 | |
| typedef int64_t limb;
 | |
| 
 | |
| /* Field element representation:
 | |
|  *
 | |
|  * Field elements are written as an array of signed, 64-bit limbs, least
 | |
|  * significant first. The value of the field element is:
 | |
|  *   x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
 | |
|  *
 | |
|  * i.e. the limbs are 26, 25, 26, 25, ... bits wide.
 | |
|  */
 | |
| 
 | |
| /* Sum two numbers: output += in */
 | |
| static void fsum(limb *output, const limb *in) {
 | |
|   unsigned i;
 | |
|   for (i = 0; i < 10; i += 2) {
 | |
|     output[0+i] = (output[0+i] + in[0+i]);
 | |
|     output[1+i] = (output[1+i] + in[1+i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Find the difference of two numbers: output = in - output
 | |
|  * (note the order of the arguments!)
 | |
|  */
 | |
| static void fdifference(limb *output, const limb *in) {
 | |
|   unsigned i;
 | |
|   for (i = 0; i < 10; ++i) {
 | |
|     output[i] = (in[i] - output[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Multiply a number by a scalar: output = in * scalar */
 | |
| static void fscalar_product(limb *output, const limb *in, const limb scalar) {
 | |
|   unsigned i;
 | |
|   for (i = 0; i < 10; ++i) {
 | |
|     output[i] = in[i] * scalar;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Multiply two numbers: output = in2 * in
 | |
|  *
 | |
|  * output must be distinct to both inputs. The inputs are reduced coefficient
 | |
|  * form, the output is not.
 | |
|  */
 | |
| static void fproduct(limb *output, const limb *in2, const limb *in) {
 | |
|   output[0] =       ((limb) ((s32) in2[0])) * ((s32) in[0]);
 | |
|   output[1] =       ((limb) ((s32) in2[0])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[0]);
 | |
|   output[2] =  2 *  ((limb) ((s32) in2[1])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[0]);
 | |
|   output[3] =       ((limb) ((s32) in2[1])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[0]);
 | |
|   output[4] =       ((limb) ((s32) in2[2])) * ((s32) in[2]) +
 | |
|                2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[1])) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[0]);
 | |
|   output[5] =       ((limb) ((s32) in2[2])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[0]);
 | |
|   output[6] =  2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[1])) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[0]);
 | |
|   output[7] =       ((limb) ((s32) in2[3])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[0]);
 | |
|   output[8] =       ((limb) ((s32) in2[4])) * ((s32) in[4]) +
 | |
|                2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[1])) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[0]);
 | |
|   output[9] =       ((limb) ((s32) in2[4])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in2[0])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[0]);
 | |
|   output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[1])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[1])) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[2]);
 | |
|   output[11] =      ((limb) ((s32) in2[5])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in2[2])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[2]);
 | |
|   output[12] =      ((limb) ((s32) in2[6])) * ((s32) in[6]) +
 | |
|                2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[3])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[3])) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[4]);
 | |
|   output[13] =      ((limb) ((s32) in2[6])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[7])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in2[4])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[4]);
 | |
|   output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[5])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[5])) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[6]);
 | |
|   output[15] =      ((limb) ((s32) in2[7])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in2[8])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in2[6])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[6]);
 | |
|   output[16] =      ((limb) ((s32) in2[8])) * ((s32) in[8]) +
 | |
|                2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[7]));
 | |
|   output[17] =      ((limb) ((s32) in2[8])) * ((s32) in[9]) +
 | |
|                     ((limb) ((s32) in2[9])) * ((s32) in[8]);
 | |
|   output[18] = 2 *  ((limb) ((s32) in2[9])) * ((s32) in[9]);
 | |
| }
 | |
| 
 | |
| /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
 | |
| static void freduce_degree(limb *output) {
 | |
|   /* Each of these shifts and adds ends up multiplying the value by 19. */
 | |
|   output[8] += output[18] << 4;
 | |
|   output[8] += output[18] << 1;
 | |
|   output[8] += output[18];
 | |
|   output[7] += output[17] << 4;
 | |
|   output[7] += output[17] << 1;
 | |
|   output[7] += output[17];
 | |
|   output[6] += output[16] << 4;
 | |
|   output[6] += output[16] << 1;
 | |
|   output[6] += output[16];
 | |
|   output[5] += output[15] << 4;
 | |
|   output[5] += output[15] << 1;
 | |
|   output[5] += output[15];
 | |
|   output[4] += output[14] << 4;
 | |
|   output[4] += output[14] << 1;
 | |
|   output[4] += output[14];
 | |
|   output[3] += output[13] << 4;
 | |
|   output[3] += output[13] << 1;
 | |
|   output[3] += output[13];
 | |
|   output[2] += output[12] << 4;
 | |
|   output[2] += output[12] << 1;
 | |
|   output[2] += output[12];
 | |
|   output[1] += output[11] << 4;
 | |
|   output[1] += output[11] << 1;
 | |
|   output[1] += output[11];
 | |
|   output[0] += output[10] << 4;
 | |
|   output[0] += output[10] << 1;
 | |
|   output[0] += output[10];
 | |
| }
 | |
| 
 | |
| #if (-1 & 3) != 3
 | |
| #error "This code only works on a two's complement system"
 | |
| #endif
 | |
| 
 | |
| /* return v / 2^26, using only shifts and adds. */
 | |
| static inline limb
 | |
| div_by_2_26(const limb v)
 | |
| {
 | |
|   /* High word of v; no shift needed*/
 | |
|   const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
 | |
|   /* Set to all 1s if v was negative; else set to 0s. */
 | |
|   const int32_t sign = ((int32_t) highword) >> 31;
 | |
|   /* Set to 0x3ffffff if v was negative; else set to 0. */
 | |
|   const int32_t roundoff = ((uint32_t) sign) >> 6;
 | |
|   /* Should return v / (1<<26) */
 | |
|   return (v + roundoff) >> 26;
 | |
| }
 | |
| 
 | |
| /* return v / (2^25), using only shifts and adds. */
 | |
| static inline limb
 | |
| div_by_2_25(const limb v)
 | |
| {
 | |
|   /* High word of v; no shift needed*/
 | |
|   const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
 | |
|   /* Set to all 1s if v was negative; else set to 0s. */
 | |
|   const int32_t sign = ((int32_t) highword) >> 31;
 | |
|   /* Set to 0x1ffffff if v was negative; else set to 0. */
 | |
|   const int32_t roundoff = ((uint32_t) sign) >> 7;
 | |
|   /* Should return v / (1<<25) */
 | |
|   return (v + roundoff) >> 25;
 | |
| }
 | |
| 
 | |
| static inline s32
 | |
| div_s32_by_2_25(const s32 v)
 | |
| {
 | |
|    const s32 roundoff = ((uint32_t)(v >> 31)) >> 7;
 | |
|    return (v + roundoff) >> 25;
 | |
| }
 | |
| 
 | |
| /* Reduce all coefficients of the short form input so that |x| < 2^26.
 | |
|  *
 | |
|  * On entry: |output[i]| < 2^62
 | |
|  */
 | |
| static void freduce_coefficients(limb *output) {
 | |
|   unsigned i;
 | |
| 
 | |
|   output[10] = 0;
 | |
| 
 | |
|   for (i = 0; i < 10; i += 2) {
 | |
|     limb over = div_by_2_26(output[i]);
 | |
|     output[i] -= over << 26;
 | |
|     output[i+1] += over;
 | |
| 
 | |
|     over = div_by_2_25(output[i+1]);
 | |
|     output[i+1] -= over << 25;
 | |
|     output[i+2] += over;
 | |
|   }
 | |
|   /* Now |output[10]| < 2 ^ 38 and all other coefficients are reduced. */
 | |
|   output[0] += output[10] << 4;
 | |
|   output[0] += output[10] << 1;
 | |
|   output[0] += output[10];
 | |
| 
 | |
|   output[10] = 0;
 | |
| 
 | |
|   /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19 * 2^38
 | |
|    * So |over| will be no more than 77825  */
 | |
|   {
 | |
|     limb over = div_by_2_26(output[0]);
 | |
|     output[0] -= over << 26;
 | |
|     output[1] += over;
 | |
|   }
 | |
| 
 | |
|   /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 77825
 | |
|    * So |over| will be no more than 1. */
 | |
|   {
 | |
|     /* output[1] fits in 32 bits, so we can use div_s32_by_2_25 here. */
 | |
|     s32 over32 = div_s32_by_2_25((s32) output[1]);
 | |
|     output[1] -= over32 << 25;
 | |
|     output[2] += over32;
 | |
|   }
 | |
| 
 | |
|   /* Finally, output[0,1,3..9] are reduced, and output[2] is "nearly reduced":
 | |
|    * we have |output[2]| <= 2^26.  This is good enough for all of our math,
 | |
|    * but it will require an extra freduce_coefficients before fcontract. */
 | |
| }
 | |
| 
 | |
| /* A helpful wrapper around fproduct: output = in * in2.
 | |
|  *
 | |
|  * output must be distinct to both inputs. The output is reduced degree and
 | |
|  * reduced coefficient.
 | |
|  */
 | |
| static void
 | |
| fmul(limb *output, const limb *in, const limb *in2) {
 | |
|   limb t[19];
 | |
|   fproduct(t, in, in2);
 | |
|   freduce_degree(t);
 | |
|   freduce_coefficients(t);
 | |
|   memcpy(output, t, sizeof(limb) * 10);
 | |
| }
 | |
| 
 | |
| static void fsquare_inner(limb *output, const limb *in) {
 | |
|   output[0] =       ((limb) ((s32) in[0])) * ((s32) in[0]);
 | |
|   output[1] =  2 *  ((limb) ((s32) in[0])) * ((s32) in[1]);
 | |
|   output[2] =  2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[2]));
 | |
|   output[3] =  2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[3]));
 | |
|   output[4] =       ((limb) ((s32) in[2])) * ((s32) in[2]) +
 | |
|                4 *  ((limb) ((s32) in[1])) * ((s32) in[3]) +
 | |
|                2 *  ((limb) ((s32) in[0])) * ((s32) in[4]);
 | |
|   output[5] =  2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in[1])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[5]));
 | |
|   output[6] =  2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
 | |
|                     ((limb) ((s32) in[2])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[6]) +
 | |
|                2 *  ((limb) ((s32) in[1])) * ((s32) in[5]));
 | |
|   output[7] =  2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
 | |
|                     ((limb) ((s32) in[2])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in[1])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[7]));
 | |
|   output[8] =       ((limb) ((s32) in[4])) * ((s32) in[4]) +
 | |
|                2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[8]) +
 | |
|                2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[3])) * ((s32) in[5])));
 | |
|   output[9] =  2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in[3])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in[2])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[1])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in[0])) * ((s32) in[9]));
 | |
|   output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
 | |
|                     ((limb) ((s32) in[4])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in[2])) * ((s32) in[8]) +
 | |
|                2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[1])) * ((s32) in[9])));
 | |
|   output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
 | |
|                     ((limb) ((s32) in[4])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[3])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in[2])) * ((s32) in[9]));
 | |
|   output[12] =      ((limb) ((s32) in[6])) * ((s32) in[6]) +
 | |
|                2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
 | |
|                2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[3])) * ((s32) in[9])));
 | |
|   output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[5])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in[4])) * ((s32) in[9]));
 | |
|   output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
 | |
|                     ((limb) ((s32) in[6])) * ((s32) in[8]) +
 | |
|                2 *  ((limb) ((s32) in[5])) * ((s32) in[9]));
 | |
|   output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
 | |
|                     ((limb) ((s32) in[6])) * ((s32) in[9]));
 | |
|   output[16] =      ((limb) ((s32) in[8])) * ((s32) in[8]) +
 | |
|                4 *  ((limb) ((s32) in[7])) * ((s32) in[9]);
 | |
|   output[17] = 2 *  ((limb) ((s32) in[8])) * ((s32) in[9]);
 | |
|   output[18] = 2 *  ((limb) ((s32) in[9])) * ((s32) in[9]);
 | |
| }
 | |
| 
 | |
| static void
 | |
| fsquare(limb *output, const limb *in) {
 | |
|   limb t[19];
 | |
|   fsquare_inner(t, in);
 | |
|   freduce_degree(t);
 | |
|   freduce_coefficients(t);
 | |
|   memcpy(output, t, sizeof(limb) * 10);
 | |
| }
 | |
| 
 | |
| /* Take a little-endian, 32-byte number and expand it into polynomial form */
 | |
| static void
 | |
| fexpand(limb *output, const u8 *input) {
 | |
| #define F(n,start,shift,mask) \
 | |
|   output[n] = ((((limb) input[start + 0]) | \
 | |
|                 ((limb) input[start + 1]) << 8 | \
 | |
|                 ((limb) input[start + 2]) << 16 | \
 | |
|                 ((limb) input[start + 3]) << 24) >> shift) & mask;
 | |
|   F(0, 0, 0, 0x3ffffff);
 | |
|   F(1, 3, 2, 0x1ffffff);
 | |
|   F(2, 6, 3, 0x3ffffff);
 | |
|   F(3, 9, 5, 0x1ffffff);
 | |
|   F(4, 12, 6, 0x3ffffff);
 | |
|   F(5, 16, 0, 0x1ffffff);
 | |
|   F(6, 19, 1, 0x3ffffff);
 | |
|   F(7, 22, 3, 0x1ffffff);
 | |
|   F(8, 25, 4, 0x3ffffff);
 | |
|   F(9, 28, 6, 0x3ffffff);
 | |
| #undef F
 | |
| }
 | |
| 
 | |
| #if (-32 >> 1) != -16
 | |
| #error "This code only works when >> does sign-extension on negative numbers"
 | |
| #endif
 | |
| 
 | |
| /* Take a fully reduced polynomial form number and contract it into a
 | |
|  * little-endian, 32-byte array
 | |
|  */
 | |
| static void
 | |
| fcontract(u8 *output, limb *input) {
 | |
|   int i;
 | |
|   int j;
 | |
| 
 | |
|   for (j = 0; j < 2; ++j) {
 | |
|     for (i = 0; i < 9; ++i) {
 | |
|       if ((i & 1) == 1) {
 | |
|         /* This calculation is a time-invariant way to make input[i] positive
 | |
|            by borrowing from the next-larger limb.
 | |
|         */
 | |
|         const s32 mask = (s32)(input[i]) >> 31;
 | |
|         const s32 carry = -(((s32)(input[i]) & mask) >> 25);
 | |
|         input[i] = (s32)(input[i]) + (carry << 25);
 | |
|         input[i+1] = (s32)(input[i+1]) - carry;
 | |
|       } else {
 | |
|         const s32 mask = (s32)(input[i]) >> 31;
 | |
|         const s32 carry = -(((s32)(input[i]) & mask) >> 26);
 | |
|         input[i] = (s32)(input[i]) + (carry << 26);
 | |
|         input[i+1] = (s32)(input[i+1]) - carry;
 | |
|       }
 | |
|     }
 | |
|     {
 | |
|       const s32 mask = (s32)(input[9]) >> 31;
 | |
|       const s32 carry = -(((s32)(input[9]) & mask) >> 25);
 | |
|       input[9] = (s32)(input[9]) + (carry << 25);
 | |
|       input[0] = (s32)(input[0]) - (carry * 19);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The first borrow-propagation pass above ended with every limb
 | |
|      except (possibly) input[0] non-negative.
 | |
| 
 | |
|      Since each input limb except input[0] is decreased by at most 1
 | |
|      by a borrow-propagation pass, the second borrow-propagation pass
 | |
|      could only have wrapped around to decrease input[0] again if the
 | |
|      first pass left input[0] negative *and* input[1] through input[9]
 | |
|      were all zero.  In that case, input[1] is now 2^25 - 1, and this
 | |
|      last borrow-propagation step will leave input[1] non-negative.
 | |
|   */
 | |
|   {
 | |
|     const s32 mask = (s32)(input[0]) >> 31;
 | |
|     const s32 carry = -(((s32)(input[0]) & mask) >> 26);
 | |
|     input[0] = (s32)(input[0]) + (carry << 26);
 | |
|     input[1] = (s32)(input[1]) - carry;
 | |
|   }
 | |
| 
 | |
|   /* Both passes through the above loop, plus the last 0-to-1 step, are
 | |
|      necessary: if input[9] is -1 and input[0] through input[8] are 0,
 | |
|      negative values will remain in the array until the end.
 | |
|    */
 | |
| 
 | |
|   input[1] <<= 2;
 | |
|   input[2] <<= 3;
 | |
|   input[3] <<= 5;
 | |
|   input[4] <<= 6;
 | |
|   input[6] <<= 1;
 | |
|   input[7] <<= 3;
 | |
|   input[8] <<= 4;
 | |
|   input[9] <<= 6;
 | |
| #define F(i, s) \
 | |
|   output[s+0] |=  input[i] & 0xff; \
 | |
|   output[s+1]  = (input[i] >> 8) & 0xff; \
 | |
|   output[s+2]  = (input[i] >> 16) & 0xff; \
 | |
|   output[s+3]  = (input[i] >> 24) & 0xff;
 | |
|   output[0] = 0;
 | |
|   output[16] = 0;
 | |
|   F(0,0);
 | |
|   F(1,3);
 | |
|   F(2,6);
 | |
|   F(3,9);
 | |
|   F(4,12);
 | |
|   F(5,16);
 | |
|   F(6,19);
 | |
|   F(7,22);
 | |
|   F(8,25);
 | |
|   F(9,28);
 | |
| #undef F
 | |
| }
 | |
| 
 | |
| /* Input: Q, Q', Q-Q'
 | |
|  * Output: 2Q, Q+Q'
 | |
|  *
 | |
|  *   x2 z3: long form
 | |
|  *   x3 z3: long form
 | |
|  *   x z: short form, destroyed
 | |
|  *   xprime zprime: short form, destroyed
 | |
|  *   qmqp: short form, preserved
 | |
|  */
 | |
| static void fmonty(limb *x2, limb *z2,  /* output 2Q */
 | |
|                    limb *x3, limb *z3,  /* output Q + Q' */
 | |
|                    limb *x, limb *z,    /* input Q */
 | |
|                    limb *xprime, limb *zprime,  /* input Q' */
 | |
|                    const limb *qmqp /* input Q - Q' */) {
 | |
|   limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
 | |
|         zzprime[19], zzzprime[19], xxxprime[19];
 | |
| 
 | |
|   memcpy(origx, x, 10 * sizeof(limb));
 | |
|   fsum(x, z);
 | |
|   fdifference(z, origx);  // does x - z
 | |
| 
 | |
|   memcpy(origxprime, xprime, sizeof(limb) * 10);
 | |
|   fsum(xprime, zprime);
 | |
|   fdifference(zprime, origxprime);
 | |
|   fproduct(xxprime, xprime, z);
 | |
|   fproduct(zzprime, x, zprime);
 | |
|   freduce_degree(xxprime);
 | |
|   freduce_coefficients(xxprime);
 | |
|   freduce_degree(zzprime);
 | |
|   freduce_coefficients(zzprime);
 | |
|   memcpy(origxprime, xxprime, sizeof(limb) * 10);
 | |
|   fsum(xxprime, zzprime);
 | |
|   fdifference(zzprime, origxprime);
 | |
|   fsquare(xxxprime, xxprime);
 | |
|   fsquare(zzzprime, zzprime);
 | |
|   fproduct(zzprime, zzzprime, qmqp);
 | |
|   freduce_degree(zzprime);
 | |
|   freduce_coefficients(zzprime);
 | |
|   memcpy(x3, xxxprime, sizeof(limb) * 10);
 | |
|   memcpy(z3, zzprime, sizeof(limb) * 10);
 | |
| 
 | |
|   fsquare(xx, x);
 | |
|   fsquare(zz, z);
 | |
|   fproduct(x2, xx, zz);
 | |
|   freduce_degree(x2);
 | |
|   freduce_coefficients(x2);
 | |
|   fdifference(zz, xx);  // does zz = xx - zz
 | |
|   memset(zzz + 10, 0, sizeof(limb) * 9);
 | |
|   fscalar_product(zzz, zz, 121665);
 | |
|   /* No need to call freduce_degree here:
 | |
|      fscalar_product doesn't increase the degree of its input. */
 | |
|   freduce_coefficients(zzz);
 | |
|   fsum(zzz, xx);
 | |
|   fproduct(z2, zz, zzz);
 | |
|   freduce_degree(z2);
 | |
|   freduce_coefficients(z2);
 | |
| }
 | |
| 
 | |
| /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
 | |
|  * them unchanged if 'iswap' is 0.  Runs in data-invariant time to avoid
 | |
|  * side-channel attacks.
 | |
|  *
 | |
|  * NOTE that this function requires that 'iswap' be 1 or 0; other values give
 | |
|  * wrong results.  Also, the two limb arrays must be in reduced-coefficient,
 | |
|  * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
 | |
|  * and all all values in a[0..9],b[0..9] must have magnitude less than
 | |
|  * INT32_MAX.
 | |
|  */
 | |
| static void
 | |
| swap_conditional(limb a[19], limb b[19], limb iswap) {
 | |
|   unsigned i;
 | |
|   const s32 swap = (s32) -iswap;
 | |
| 
 | |
|   for (i = 0; i < 10; ++i) {
 | |
|     const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
 | |
|     a[i] = ((s32)a[i]) ^ x;
 | |
|     b[i] = ((s32)b[i]) ^ x;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Calculates nQ where Q is the x-coordinate of a point on the curve
 | |
|  *
 | |
|  *   resultx/resultz: the x coordinate of the resulting curve point (short form)
 | |
|  *   n: a little endian, 32-byte number
 | |
|  *   q: a point of the curve (short form)
 | |
|  */
 | |
| static void
 | |
| cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
 | |
|   limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
 | |
|   limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
 | |
|   limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
 | |
|   limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
 | |
| 
 | |
|   unsigned i, j;
 | |
| 
 | |
|   memcpy(nqpqx, q, sizeof(limb) * 10);
 | |
| 
 | |
|   for (i = 0; i < 32; ++i) {
 | |
|     u8 byte = n[31 - i];
 | |
|     for (j = 0; j < 8; ++j) {
 | |
|       const limb bit = byte >> 7;
 | |
| 
 | |
|       swap_conditional(nqx, nqpqx, bit);
 | |
|       swap_conditional(nqz, nqpqz, bit);
 | |
|       fmonty(nqx2, nqz2,
 | |
|              nqpqx2, nqpqz2,
 | |
|              nqx, nqz,
 | |
|              nqpqx, nqpqz,
 | |
|              q);
 | |
|       swap_conditional(nqx2, nqpqx2, bit);
 | |
|       swap_conditional(nqz2, nqpqz2, bit);
 | |
| 
 | |
|       t = nqx;
 | |
|       nqx = nqx2;
 | |
|       nqx2 = t;
 | |
|       t = nqz;
 | |
|       nqz = nqz2;
 | |
|       nqz2 = t;
 | |
|       t = nqpqx;
 | |
|       nqpqx = nqpqx2;
 | |
|       nqpqx2 = t;
 | |
|       t = nqpqz;
 | |
|       nqpqz = nqpqz2;
 | |
|       nqpqz2 = t;
 | |
| 
 | |
|       byte <<= 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   memcpy(resultx, nqx, sizeof(limb) * 10);
 | |
|   memcpy(resultz, nqz, sizeof(limb) * 10);
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Shamelessly copied from djb's code
 | |
| // -----------------------------------------------------------------------------
 | |
| static void
 | |
| crecip(limb *out, const limb *z) {
 | |
|   limb z2[10];
 | |
|   limb z9[10];
 | |
|   limb z11[10];
 | |
|   limb z2_5_0[10];
 | |
|   limb z2_10_0[10];
 | |
|   limb z2_20_0[10];
 | |
|   limb z2_50_0[10];
 | |
|   limb z2_100_0[10];
 | |
|   limb t0[10];
 | |
|   limb t1[10];
 | |
|   int i;
 | |
| 
 | |
|   /* 2 */ fsquare(z2,z);
 | |
|   /* 4 */ fsquare(t1,z2);
 | |
|   /* 8 */ fsquare(t0,t1);
 | |
|   /* 9 */ fmul(z9,t0,z);
 | |
|   /* 11 */ fmul(z11,z9,z2);
 | |
|   /* 22 */ fsquare(t0,z11);
 | |
|   /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
 | |
| 
 | |
|   /* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
 | |
|   /* 2^7 - 2^2 */ fsquare(t1,t0);
 | |
|   /* 2^8 - 2^3 */ fsquare(t0,t1);
 | |
|   /* 2^9 - 2^4 */ fsquare(t1,t0);
 | |
|   /* 2^10 - 2^5 */ fsquare(t0,t1);
 | |
|   /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
 | |
| 
 | |
|   /* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
 | |
|   /* 2^12 - 2^2 */ fsquare(t1,t0);
 | |
|   /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 | |
|   /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
 | |
| 
 | |
|   /* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
 | |
|   /* 2^22 - 2^2 */ fsquare(t1,t0);
 | |
|   /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 | |
|   /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
 | |
| 
 | |
|   /* 2^41 - 2^1 */ fsquare(t1,t0);
 | |
|   /* 2^42 - 2^2 */ fsquare(t0,t1);
 | |
|   /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
 | |
|   /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
 | |
| 
 | |
|   /* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
 | |
|   /* 2^52 - 2^2 */ fsquare(t1,t0);
 | |
|   /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 | |
|   /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
 | |
| 
 | |
|   /* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
 | |
|   /* 2^102 - 2^2 */ fsquare(t0,t1);
 | |
|   /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
 | |
|   /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
 | |
| 
 | |
|   /* 2^201 - 2^1 */ fsquare(t0,t1);
 | |
|   /* 2^202 - 2^2 */ fsquare(t1,t0);
 | |
|   /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 | |
|   /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
 | |
| 
 | |
|   /* 2^251 - 2^1 */ fsquare(t1,t0);
 | |
|   /* 2^252 - 2^2 */ fsquare(t0,t1);
 | |
|   /* 2^253 - 2^3 */ fsquare(t1,t0);
 | |
|   /* 2^254 - 2^4 */ fsquare(t0,t1);
 | |
|   /* 2^255 - 2^5 */ fsquare(t1,t0);
 | |
|   /* 2^255 - 21 */ fmul(out,t1,z11);
 | |
| }
 | |
| 
 | |
| int curve25519_donna(u8 *, const u8 *, const u8 *);
 | |
| 
 | |
| int
 | |
| curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
 | |
|   limb bp[10], x[10], z[11], zmone[10];
 | |
|   uint8_t e[32];
 | |
|   int i;
 | |
| 
 | |
|   for (i = 0; i < 32; ++i) e[i] = secret[i];
 | |
|   e[0] &= 248;
 | |
|   e[31] &= 127;
 | |
|   e[31] |= 64;
 | |
| 
 | |
|   fexpand(bp, basepoint);
 | |
|   cmult(x, z, e, bp);
 | |
|   crecip(zmone, z);
 | |
|   fmul(z, x, zmone);
 | |
|   freduce_coefficients(z);
 | |
|   fcontract(mypublic, z);
 | |
|   return 0;
 | |
| }
 |