|
|
|
env GOPRIVATE=test/main
|
|
|
|
|
|
|
|
# Unknown build flags should result in errors.
|
|
|
|
! garble reverse -badflag
|
|
|
|
stderr 'flag provided but not defined'
|
|
|
|
|
|
|
|
garble build
|
|
|
|
exec ./main
|
|
|
|
cp stderr main.stderr
|
|
|
|
exec cat main.stderr
|
|
|
|
|
|
|
|
# Ensure that the garbled panic output looks correct.
|
|
|
|
# This output is not reproducible between 'go test' runs,
|
|
|
|
# so we can't use a static golden file.
|
|
|
|
grep 'goroutine 1 \[running\]' main.stderr
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
! grep 'ExportedLibFunc|unexportedMainFunc|test/main|main.go|lib.go' main.stderr
|
|
|
|
|
|
|
|
stdin main.stderr
|
|
|
|
garble reverse
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
stdout -count=1 'test/main/lib\.ExportedLibFunc'
|
|
|
|
stdout -count=1 'main\.unexportedMainFunc'
|
|
|
|
# TODO: this is what we want when "reverse" is finished
|
|
|
|
# cmp stdout reverse.stdout
|
|
|
|
|
|
|
|
# Ensure that the reversed output matches the non-garbled output.
|
|
|
|
go build -trimpath
|
|
|
|
exec ./main
|
|
|
|
cmp stderr reverse.stdout
|
|
|
|
|
|
|
|
-- go.mod --
|
|
|
|
module test/main
|
|
|
|
|
|
|
|
go 1.15
|
|
|
|
-- main.go --
|
|
|
|
package main
|
|
|
|
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
import (
|
|
|
|
"os"
|
|
|
|
|
|
|
|
"test/main/lib"
|
|
|
|
)
|
|
|
|
|
|
|
|
func main() {
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
unexportedMainFunc()
|
|
|
|
}
|
|
|
|
|
|
|
|
func unexportedMainFunc() {
|
|
|
|
if err := lib.ExportedLibFunc(os.Stderr); err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
-- lib/lib.go --
|
|
|
|
package lib
|
|
|
|
|
|
|
|
import (
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
"io"
|
|
|
|
"regexp"
|
|
|
|
"runtime/debug"
|
|
|
|
)
|
|
|
|
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
func ExportedLibFunc(w io.Writer) error {
|
|
|
|
// Panic outputs include "0xNN" pointers and offsets which change
|
|
|
|
// between platforms.
|
|
|
|
// Strip them out here, to have portable static stdout files.
|
|
|
|
rxVariableSuffix := regexp.MustCompile(`0x[0-9a-f]+`)
|
|
|
|
|
|
|
|
stack := debug.Stack()
|
|
|
|
stack = rxVariableSuffix.ReplaceAll(stack, []byte("0x??"))
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
_, err := w.Write(stack)
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
-- reverse.stdout --
|
|
|
|
goroutine 1 [running]:
|
|
|
|
runtime/debug.Stack(0x??, 0x??, 0x??)
|
|
|
|
runtime/debug/stack.go:24 +0x??
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
|
|
|
|
test/main/lib/lib.go:15 +0x??
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
main.unexportedMainFunc(...)
|
|
|
|
test/main/main.go:14
|
|
|
|
main.main()
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
test/main/main.go:10 +0x??
|