You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
garble/main.go

1463 lines
42 KiB
Go

// Copyright (c) 2019, The Garble Authors.
// See LICENSE for licensing information.
5 years ago
package main
import (
"archive/tar"
"bytes"
"compress/gzip"
"encoding/base64"
"encoding/binary"
"errors"
5 years ago
"flag"
"fmt"
"go/ast"
"go/importer"
"go/parser"
"go/printer"
"go/token"
"go/types"
"io"
"io/ioutil"
"log"
mathrand "math/rand"
5 years ago
"os"
"os/exec"
"path/filepath"
"reflect"
"runtime"
"runtime/debug"
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
"strconv"
"strings"
"time"
"golang.org/x/mod/module"
"golang.org/x/mod/semver"
"golang.org/x/tools/go/ast/astutil"
"mvdan.cc/garble/internal/literals"
5 years ago
)
var (
flagSet = flag.NewFlagSet("garble", flag.ContinueOnError)
version = "(devel)" // to match the default from runtime/debug
)
5 years ago
var (
flagGarbleLiterals bool
flagGarbleTiny bool
flagDebugDir string
flagSeed string
)
func init() {
flagSet.Usage = usage
flagSet.BoolVar(&flagGarbleLiterals, "literals", false, "Obfuscate literals such as strings")
flagSet.BoolVar(&flagGarbleTiny, "tiny", false, "Optimize for binary size, losing the ability to reverse the process")
flagSet.StringVar(&flagDebugDir, "debugdir", "", "Write the garbled source to a directory, e.g. -debugdir=out")
flagSet.StringVar(&flagSeed, "seed", "", "Provide a base64-encoded seed, e.g. -seed=o9WDTZ4CN4w\nFor a random seed, provide -seed=random")
}
5 years ago
func usage() {
fmt.Fprintf(os.Stderr, `
Garble obfuscates Go code by wrapping the Go toolchain.
5 years ago
Usage:
garble [flags] build [build flags] [packages]
Aside from "build", the "test" command mirroring "go test" is also supported.
garble accepts the following flags:
5 years ago
`[1:])
flagSet.PrintDefaults()
fmt.Fprintf(os.Stderr, `
For more information, see https://github.com/burrowers/garble.
`[1:])
5 years ago
}
func main() { os.Exit(main1()) }
var (
fset = token.NewFileSet()
sharedTempDir = os.Getenv("GARBLE_SHARED")
printConfig = printer.Config{Mode: printer.RawFormat}
// origImporter is a go/types importer which uses the original versions
// of packages, without any obfuscation. This is helpful to make
// decisions on how to obfuscate our input code.
origImporter = importer.ForCompiler(fset, "gc", func(path string) (io.ReadCloser, error) {
pkg, err := listPackage(path)
if err != nil {
return nil, err
}
return os.Open(pkg.Export)
})
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
// Basic information about the package being currently compiled or linked.
curPkg *listedPackage
buildInfo = struct {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
// TODO: do we still need imports?
imports map[string]importedPkg // parsed importCfg plus cached info
}{imports: make(map[string]importedPkg)}
garbledImporter = importer.ForCompiler(fset, "gc", func(path string) (io.ReadCloser, error) {
return os.Open(buildInfo.imports[path].packagefile)
}).(types.ImporterFrom)
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
opts *flagOptions
envGoPrivate = os.Getenv("GOPRIVATE") // complemented by 'go env' later
)
func garbledImport(path string) (*types.Package, error) {
ipkg, ok := buildInfo.imports[path]
if !ok {
return nil, fmt.Errorf("could not find imported package %q", path)
}
if ipkg.pkg != nil {
return ipkg.pkg, nil // cached
}
if opts.GarbleDir == "" {
return nil, fmt.Errorf("$GARBLE_DIR unset; did you run via 'garble build'?")
}
pkg, err := garbledImporter.ImportFrom(path, opts.GarbleDir, 0)
if err != nil {
return nil, err
}
ipkg.pkg = pkg // cache for later use
return pkg, nil
}
type importedPkg struct {
packagefile string
pkg *types.Package
}
5 years ago
func main1() int {
if err := flagSet.Parse(os.Args[1:]); err != nil {
return 2
}
log.SetPrefix("[garble] ")
5 years ago
args := flagSet.Args()
if len(args) < 1 {
usage()
return 2
5 years ago
}
if err := mainErr(args); err != nil {
switch err {
case flag.ErrHelp:
usage()
return 2
case errJustExit:
default:
fmt.Fprintln(os.Stderr, err)
if flagSeed == "random" {
fmt.Fprintf(os.Stderr, "random seed: %s\n", base64.RawStdEncoding.EncodeToString(opts.Seed))
}
}
return 1
}
return 0
}
var errJustExit = errors.New("")
func goVersionOK() bool {
const (
minGoVersion = "v1.15.0"
suggestedGoVersion = "1.16.x"
gitTimeFormat = "Mon Jan 2 15:04:05 2006 -0700"
)
// Go 1.15 was released on August 11th, 2020.
minGoVersionDate := time.Date(2020, 8, 11, 0, 0, 0, 0, time.UTC)
out, err := exec.Command("go", "version").CombinedOutput()
rawVersion := strings.TrimSpace(string(out))
if err != nil || !strings.HasPrefix(rawVersion, "go version ") {
fmt.Fprintf(os.Stderr, `Can't get Go version: %v
This is likely due to go not being installed/setup correctly.
How to install Go: https://golang.org/doc/install
`, err)
return false
}
rawVersion = strings.TrimPrefix(rawVersion, "go version ")
tagIdx := strings.IndexByte(rawVersion, ' ')
tag := rawVersion[:tagIdx]
if tag == "devel" {
commitAndDate := rawVersion[tagIdx+1:]
// Remove commit hash and architecture from version
startDateIdx := strings.IndexByte(commitAndDate, ' ') + 1
endDateIdx := strings.LastIndexByte(commitAndDate, ' ')
if endDateIdx <= 0 {
fmt.Fprintf(os.Stderr, "Can't recognize devel build timestamp")
return false
}
date := commitAndDate[startDateIdx:endDateIdx]
versionDate, err := time.Parse(gitTimeFormat, date)
if err != nil {
fmt.Fprintf(os.Stderr, "Can't recognize devel build timestamp: %v\n", err)
return false
}
if versionDate.After(minGoVersionDate) {
return true
}
fmt.Fprintf(os.Stderr, "Go version %q is too old; please upgrade to Go %s or a newer devel version\n", rawVersion, suggestedGoVersion)
return false
}
version := "v" + strings.TrimPrefix(tag, "go")
if semver.Compare(version, minGoVersion) < 0 {
fmt.Fprintf(os.Stderr, "Go version %q is too old; please upgrade to Go %s\n", rawVersion, suggestedGoVersion)
return false
}
return true
}
func mainErr(args []string) error {
// If we recognize an argument, we're not running within -toolexec.
switch command, args := args[0], args[1:]; command {
case "help":
return flag.ErrHelp
case "version":
if len(args) > 0 {
return fmt.Errorf("the version command does not take arguments")
}
// don't overwrite the version if it was set by -ldflags=-X
if info, ok := debug.ReadBuildInfo(); ok && version == "(devel)" {
mod := &info.Main
if mod.Replace != nil {
mod = mod.Replace
}
version = mod.Version
}
fmt.Println(version)
return nil
case "reverse":
return commandReverse(args)
case "build", "test", "list":
cmd, err := toolexecCmd(command, args)
if err != nil {
return err
}
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
if !filepath.IsAbs(args[0]) {
// -toolexec gives us an absolute path to the tool binary to
// run, so this is most likely misuse of garble by a user.
return fmt.Errorf("unknown command: %q", args[0])
}
// We're in a toolexec sub-process, not directly called by the user.
// Load the shared data and wrap the tool, like the compiler or linker.
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
if err := loadSharedCache(); err != nil {
return err
}
opts = &cache.Options
5 years ago
_, tool := filepath.Split(args[0])
if runtime.GOOS == "windows" {
tool = strings.TrimSuffix(tool, ".exe")
}
if len(args) == 2 && args[1] == "-V=full" {
return alterToolVersion(tool, args)
}
transform := transformFuncs[tool]
5 years ago
transformed := args[1:]
// log.Println(tool, transformed)
if transform != nil {
var err error
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
if transformed, err = transform(transformed); err != nil {
return err
5 years ago
}
}
cmd := exec.Command(args[0], transformed...)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if err := cmd.Run(); err != nil {
return err
5 years ago
}
return nil
5 years ago
}
// toolexecCmd builds an *exec.Cmd which is set up for running "go <command>"
// with -toolexec=garble and the supplied arguments.
//
// Note that it uses and modifies global state; in general, it should only be
// called once from mainErr in the top-level garble process.
func toolexecCmd(command string, args []string) (*exec.Cmd, error) {
if !goVersionOK() {
return nil, errJustExit
}
// Split the flags from the package arguments, since we'll need
// to run 'go list' on the same set of packages.
flags, args := splitFlagsFromArgs(args)
for _, f := range flags {
switch f {
case "-h", "-help", "--help":
return nil, flag.ErrHelp
}
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
if err := setFlagOptions(); err != nil {
return nil, err
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
// Here is the only place we initialize the cache.
// The sub-processes will parse it from a shared gob file.
cache = &sharedCache{Options: *opts}
// Note that we also need to pass build flags to 'go list', such
// as -tags.
cache.BuildFlags = filterBuildFlags(flags)
if command == "test" {
cache.BuildFlags = append(cache.BuildFlags, "-test")
}
if err := setGoPrivate(); err != nil {
return nil, err
}
var err error
cache.ExecPath, err = os.Executable()
if err != nil {
return nil, err
}
if err := setListedPackages(args); err != nil {
return nil, err
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
sharedTempDir, err = saveSharedCache()
if err != nil {
return nil, err
}
os.Setenv("GARBLE_SHARED", sharedTempDir)
defer os.Remove(sharedTempDir)
goArgs := []string{
command,
"-trimpath",
"-toolexec=" + cache.ExecPath,
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
if flagDebugDir != "" {
// In case the user deletes the debug directory,
// and a previous build is cached,
// rebuild all packages to re-fill the debug dir.
goArgs = append(goArgs, "-a")
}
if command == "test" {
// vet is generally not useful on garbled code; keep it
// disabled by default.
goArgs = append(goArgs, "-vet=off")
}
goArgs = append(goArgs, flags...)
goArgs = append(goArgs, args...)
return exec.Command("go", goArgs...), nil
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
var transformFuncs = map[string]func([]string) (args []string, _ error){
"asm": transformAsm,
"compile": transformCompile,
"link": transformLink,
}
func transformAsm(args []string) ([]string, error) {
flags, paths := splitFlagsFromFiles(args, ".s")
symAbis := false
// Note that flagValue only supports "-foo=true" bool flags, but the std
// flag is generally just "-std".
// TODO: Better support boolean flags for the tools.
for _, flag := range flags {
if flag == "-gensymabis" {
symAbis = true
}
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
curPkgPath := flagValue(flags, "-p")
// If we are generating symbol ABIs, the output does not actually
// contain curPkgPath. Exported APIs show up as "".FooBar.
// Otherwise, we are assembling, and curPkgPath does make its way into
// the output object file.
// To obfuscate the path in the -p flag, we need the current action ID,
// which we recover from the file that transformCompile wrote for us.
if !symAbis && curPkgPath != "main" && isPrivate(curPkgPath) {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
curPkgPathFull := curPkgPath
if curPkgPathFull == "main" {
// TODO(mvdan): this can go with TOOLEXEC_IMPORTPATH
curPkgPathFull = cache.MainImportPath
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
newPkgPath := hashWith(cache.ListedPackages[curPkgPathFull].GarbleActionID, curPkgPath)
flags = flagSetValue(flags, "-p", newPkgPath)
}
return append(flags, paths...), nil
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
func transformCompile(args []string) ([]string, error) {
var err error
flags, paths := splitFlagsFromFiles(args, ".go")
// We will force the linker to drop DWARF via -w, so don't spend time
// generating it.
flags = append(flags, "-dwarf=false")
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
curPkgPath := flagValue(flags, "-p")
if (curPkgPath == "runtime" && opts.Tiny) || curPkgPath == "runtime/internal/sys" {
// Even though these packages aren't private, we will still process
// them later to remove build information and strip code from the
// runtime. However, we only want flags to work on private packages.
opts.GarbleLiterals = false
opts.DebugDir = ""
} else if !isPrivate(curPkgPath) {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return append(flags, paths...), nil
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
for i, path := range paths {
if filepath.Base(path) == "_gomod_.go" {
// never include module info
paths = append(paths[:i], paths[i+1:]...)
break
}
}
if len(paths) == 1 && filepath.Base(paths[0]) == "_testmain.go" {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return append(flags, paths...), nil
}
// If the value of -trimpath doesn't contain the separator ';', the 'go
// build' command is most likely not using '-trimpath'.
trimpath := flagValue(flags, "-trimpath")
if !strings.Contains(trimpath, ";") {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, fmt.Errorf("-toolexec=garble should be used alongside -trimpath")
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
curPkgPathFull := curPkgPath
if curPkgPathFull == "main" {
// TODO(mvdan): this can go with TOOLEXEC_IMPORTPATH
curPkgPathFull = cache.MainImportPath
}
curPkg = cache.ListedPackages[curPkgPathFull]
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
newImportCfg, err := fillBuildInfo(flags)
if err != nil {
return nil, err
}
var files []*ast.File
for _, path := range paths {
file, err := parser.ParseFile(fset, path, nil, parser.ParseComments)
if err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
files = append(files, file)
}
randSeed := opts.Seed
if len(randSeed) == 0 {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
randSeed = curPkg.GarbleActionID
}
// log.Printf("seeding math/rand with %x\n", randSeed)
mathrand.Seed(int64(binary.BigEndian.Uint64(randSeed)))
tf := &transformer{
info: &types.Info{
Types: make(map[ast.Expr]types.TypeAndValue),
Defs: make(map[*ast.Ident]types.Object),
Uses: make(map[*ast.Ident]types.Object),
},
}
standardLibrary := false
// Note that flagValue only supports "-foo=true" bool flags, but the std
// flag is generally just "-std".
// TODO: Better support boolean flags for the tools.
for _, flag := range flags {
if flag == "-std" {
standardLibrary = true
}
}
// The standard library vendors external packages, which results in them
// listing "golang.org/x/foo" in go list -json's Deps, plus an ImportMap
// entry to remap them to "vendor/golang.org/x/foo".
// We support that edge case in listPackage, presumably, though it seems
// like importer.ForCompiler with a lookup function isn't capable of it.
// It does work without an explicit lookup func though, which results in
// extra calls to 'go list'.
// Since this is a rare edge case and only occurs for a few std
// packages, do the extra 'go list' calls for now.
// TODO(mvdan): report this upstream and investigate further.
if standardLibrary && len(cache.ListedPackages[curPkgPath].ImportMap) > 0 {
origImporter = importer.Default()
}
origTypesConfig := types.Config{Importer: origImporter}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
tf.pkg, err = origTypesConfig.Check(curPkgPathFull, fset, files, tf.info)
if err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, fmt.Errorf("typecheck error: %v", err)
}
tf.recordReflectArgs(files)
if opts.GarbleLiterals {
// TODO: use transformer here?
files = literals.Obfuscate(files, tf.info, fset, tf.ignoreObjects)
}
// Add our temporary dir to the beginning of -trimpath, so that we don't
// leak temporary dirs. Needs to be at the beginning, since there may be
// shorter prefixes later in the list, such as $PWD if TMPDIR=$PWD/tmp.
flags = flagSetValue(flags, "-trimpath", sharedTempDir+"=>;"+trimpath)
// log.Println(flags)
detachedComments := make([][]string, len(files))
for i, file := range files {
name := filepath.Base(filepath.Clean(paths[i]))
comments, file := tf.transformLineInfo(file, name)
tf.handleDirectives(comments)
detachedComments[i], files[i] = comments, file
}
obfSrcArchive := &bytes.Buffer{}
obfSrcGzipWriter := gzip.NewWriter(obfSrcArchive)
defer obfSrcGzipWriter.Close()
obfSrcTarWriter := tar.NewWriter(obfSrcGzipWriter)
defer obfSrcTarWriter.Close()
// If this is a package to obfuscate, swap the -p flag with the new
// package path.
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
newPkgPath := curPkgPath
if curPkgPath != "main" && isPrivate(curPkgPath) {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
newPkgPath = hashWith(curPkg.GarbleActionID, curPkgPath)
// println("compile -p:", curPkgPath, newPkgPath)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
flags = flagSetValue(flags, "-p", newPkgPath)
}
// TODO: randomize the order and names of the files
newPaths := make([]string, 0, len(files))
for i, file := range files {
origName := filepath.Base(filepath.Clean(paths[i]))
name := origName
switch {
case curPkgPath == "runtime":
// strip unneeded runtime code
stripRuntime(origName, file)
case curPkgPath == "runtime/internal/sys":
// The first declaration in zversion.go contains the Go
// version as follows. Replace it here, since the
// linker's -X does not work with constants.
//
// const TheVersion = `devel ...`
//
// Don't touch the source in any other way.
if origName != "zversion.go" {
break
}
spec := file.Decls[0].(*ast.GenDecl).Specs[0].(*ast.ValueSpec)
lit := spec.Values[0].(*ast.BasicLit)
lit.Value = "`unknown`"
case strings.HasPrefix(origName, "_cgo_"):
// Cgo generated code requires a prefix. Also, don't
// garble it, since it's just generated code and it gets
// messy.
name = "_cgo_" + name
default:
file = tf.transformGo(file)
// Uncomment for some quick debugging. Do not delete.
// fmt.Fprintf(os.Stderr, "\n-- %s/%s --\n", curPkgPath, origName)
// if err := printConfig.Fprint(os.Stderr, fset, file); err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
// return nil, err
// }
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
ast.Inspect(file, func(node ast.Node) bool {
imp, ok := node.(*ast.ImportSpec)
if !ok {
return true
}
path, err := strconv.Unquote(imp.Path.Value)
if err != nil {
panic(err) // should never happen
}
if !isPrivate(path) {
return true
}
// We're importing an obfuscated package.
// Replace the import path with its obfuscated version.
// If the import was unnamed, give it the name of the
// original package name, to keep references working.
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
lpkg, err := listPackage(path)
if err != nil {
panic(err) // should never happen
}
newPath := hashWith(lpkg.GarbleActionID, path)
imp.Path.Value = strconv.Quote(newPath)
if imp.Name == nil {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
imp.Name = &ast.Ident{Name: lpkg.Name}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
}
return true
})
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
if curPkgPath != "main" && isPrivate(curPkgPath) {
file.Name.Name = newPkgPath
}
tempFile, err := ioutil.TempFile(sharedTempDir, name+".*.go")
if err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
defer tempFile.Close()
obfSrc := &bytes.Buffer{}
printWriter := io.MultiWriter(tempFile, obfSrc)
for _, comment := range detachedComments[i] {
if _, err := printWriter.Write([]byte(comment + "\n")); err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
}
if err := printConfig.Fprint(printWriter, fset, file); err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
if opts.DebugDir != "" {
osPkgPath := filepath.FromSlash(curPkgPath)
pkgDebugDir := filepath.Join(opts.DebugDir, osPkgPath)
if err := os.MkdirAll(pkgDebugDir, 0o755); err != nil {
return nil, err
}
debugFilePath := filepath.Join(pkgDebugDir, origName)
debugFile, err := os.Create(debugFilePath)
if err != nil {
return nil, err
}
if err := printConfig.Fprint(debugFile, fset, file); err != nil {
return nil, err
}
if err := debugFile.Close(); err != nil {
return nil, err
}
}
if err := tempFile.Close(); err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
if err := obfSrcTarWriter.WriteHeader(&tar.Header{
Name: name,
Mode: 0o755,
ModTime: time.Now(), // Need for restoring obfuscation time
Size: int64(obfSrc.Len()),
}); err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
if _, err := obfSrcTarWriter.Write(obfSrc.Bytes()); err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
newPaths = append(newPaths, tempFile.Name())
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
flags = flagSetValue(flags, "-importcfg", newImportCfg)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return append(flags, newPaths...), nil
}
// handleDirectives looks at all the comments in a file containing build
// directives, and does the necessary for the obfuscation process to work.
//
// Right now, this means recording what local names are used with go:linkname,
// and rewriting those directives to use obfuscated name from other packages.
func (tf *transformer) handleDirectives(comments []string) {
for i, comment := range comments {
if !strings.HasPrefix(comment, "//go:linkname ") {
continue
}
fields := strings.Fields(comment)
if len(fields) != 3 {
continue
}
// This directive has two arguments: "go:linkname localName newName"
localName := fields[1]
// The local name must not be obfuscated.
obj := tf.pkg.Scope().Lookup(localName)
if obj != nil {
tf.ignoreObjects[obj] = true
}
// If the new name is of the form "pkgpath.Name", and
// we've obfuscated "Name" in that package, rewrite the
// directive to use the obfuscated name.
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
target := strings.Split(fields[2], ".")
if len(target) != 2 {
continue
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
pkgPath, name := target[0], target[1]
if pkgPath == "runtime" && strings.HasPrefix(name, "cgo") {
continue // ignore cgo-generated linknames
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
if !isPrivate(pkgPath) {
continue // ignore non-private symbols
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
lpkg, err := listPackage(pkgPath)
if err != nil {
continue // probably a made up symbol name
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
garbledPkg, _ := garbledImport(pkgPath)
if garbledPkg != nil && garbledPkg.Scope().Lookup(name) != nil {
continue // the name exists and was not garbled
}
// The name exists and was obfuscated; replace the
// comment with the obfuscated name.
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
newName := hashWith(lpkg.GarbleActionID, name)
newPkgPath := pkgPath
if pkgPath != "main" {
newPkgPath = hashWith(lpkg.GarbleActionID, pkgPath)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
fields[2] = newPkgPath + "." + newName
obfuscate unexported names like exported ones (#227) In 90fa325da7, the obfuscation logic was changed to use hashes for exported names, but incremental names starting at just one letter for unexported names. Presumably, this was done for the sake of binary size. I argue that this is not a good idea for the default mode for a number of reasons: 1) It makes reversing of stack traces nearly impossible for unexported names, since replacing an obfuscated name "c" with "originalName" would trigger too many false positives by matching single characters. 2) Exported and unexported names aren't different. We need to know how names were obfuscated at a later time in both cases, thanks to use cases like -ldflags=-X. Using short names for one but not the other doesn't make a lot of sense, and makes the logic inconsistent. 3) Shaving off three bytes for unexported names doesn't seem like a huge deal for the default mode, when we already have -tiny to optimize for size. This saves us a bit of work, but most importantly, simplifies the obfuscation state as we no longer need to carry privateNameMap between the compile and link stages. name old time/op new time/op delta Build-8 153ms ± 2% 150ms ± 2% ~ (p=0.065 n=6+6) name old bin-B new bin-B delta Build-8 7.09M ± 0% 7.08M ± 0% -0.24% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 296ms ± 5% 277ms ± 6% -6.50% (p=0.026 n=6+6) name old user-time/op new user-time/op delta Build-8 562ms ± 1% 558ms ± 3% ~ (p=0.329 n=5+6) Note that I do not oppose using short names for both exported and unexported names in the future for -tiny, since reversing of stack traces will by design not work there. The code can be resurrected from the git history if we want to improve -tiny that way in the future, as we'd need to store state in header files again. Another major cleanup we can do here is to no longer use the garbledImports map. From a look at obfuscateImports, we hash a package's import path with its action ID, much like exported names, so we can simply re-do that hashing for the linker's -X flag. garbledImports does have some logic to handle duplicate package names, but it's worth noting that should not affect package paths, as they are always unique. That area of code could probably do with some simplification in the future, too. While at it, make hashWith panic if either parameter is empty. obfuscateImports was hashing the main package path without a salt due to a bug, so we want to catch those in the future. Finally, make some tiny spacing and typo tweaks to the README.
3 years ago
comments[i] = strings.Join(fields, " ")
}
}
// runtimeRelated is a snapshot of all the packages runtime depends on, or
// packages which the runtime points to via go:linkname.
//
// Once we support go:linkname well and once we can obfuscate the runtime
// package, this entire map can likely go away.
//
// The list was obtained via scripts/runtime-related.sh on Go 1.16.
var runtimeRelated = map[string]bool{
"bufio": true,
"bytes": true,
"compress/flate": true,
"compress/gzip": true,
"context": true,
"crypto/x509/internal/macos": true,
"encoding/binary": true,
"errors": true,
"fmt": true,
"hash": true,
"hash/crc32": true,
"internal/bytealg": true,
"internal/cpu": true,
"internal/fmtsort": true,
"internal/nettrace": true,
"internal/oserror": true,
"internal/poll": true,
"internal/race": true,
"internal/reflectlite": true,
"internal/singleflight": true,
"internal/syscall/execenv": true,
"internal/syscall/unix": true,
"internal/syscall/windows": true,
"internal/syscall/windows/registry": true,
"internal/syscall/windows/sysdll": true,
"internal/testlog": true,
"internal/unsafeheader": true,
"io": true,
"io/fs": true,
"math": true,
"math/bits": true,
"net": true,
"os": true,
"os/signal": true,
"path": true,
"plugin": true,
"reflect": true,
"runtime": true,
"runtime/cgo": true,
"runtime/debug": true,
"runtime/internal/atomic": true,
"runtime/internal/math": true,
"runtime/internal/sys": true,
"runtime/metrics": true,
"runtime/pprof": true,
"runtime/trace": true,
"sort": true,
"strconv": true,
"strings": true,
"sync": true,
"sync/atomic": true,
"syscall": true,
"text/tabwriter": true,
"time": true,
"unicode": true,
"unicode/utf16": true,
"unicode/utf8": true,
"unsafe": true,
"vendor/golang.org/x/net/dns/dnsmessage": true,
"vendor/golang.org/x/net/route": true,
// These packages were moved in Go 1.16, but 1.15's runtime still
// linknames to them.
"io/ioutil": true,
"path/filepath": true,
// Go 1.15's "net" package depends on "math/rand", but 1.16's does not.
// Keep it here to support 1.15.
"math/rand": true,
}
// isPrivate checks if GOPRIVATE matches path.
//
// To allow using garble without GOPRIVATE for standalone main packages, it will
// default to not matching standard library packages.
func isPrivate(path string) bool {
// isPrivate is used in lots of places, so use it as a way to sanity
// check that none of our package paths are invalid.
// This can happen if we end up with an escaped or corrupted path.
// TODO: Do we want to support obfuscating test packages?
// It is a bit tricky as their import paths are confusing, such as
// "test/bar.test" and "test/bar [test/bar.test]".
if strings.HasSuffix(path, ".test") || strings.HasSuffix(path, ".test]") {
return false
}
if err := module.CheckImportPath(path); err != nil {
panic(err)
}
if runtimeRelated[path] {
return false
}
if path == "main" || path == "command-line-arguments" || strings.HasPrefix(path, "plugin/unnamed") {
// TODO: why don't we see the full package path for main
// packages? The linker has it at the top of -importcfg, but not
// the compiler.
return true
}
return module.MatchPrefixPatterns(envGoPrivate, path)
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
// fillBuildInfo initializes the global buildInfo struct via the supplied flags,
// and constructs a new importcfg with the obfuscated import paths changed as
// necessary.
func fillBuildInfo(flags []string) (newImportCfg string, _ error) {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
importCfg := flagValue(flags, "-importcfg")
if importCfg == "" {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return "", fmt.Errorf("could not find -importcfg argument")
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
data, err := ioutil.ReadFile(importCfg)
if err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return "", err
}
importMap := make(map[string]string)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
for _, line := range strings.SplitAfter(string(data), "\n") {
line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#") {
continue
}
i := strings.Index(line, " ")
if i < 0 {
continue
}
verb := line[:i]
switch verb {
case "importmap":
args := strings.TrimSpace(line[i+1:])
j := strings.Index(args, "=")
if j < 0 {
continue
}
beforePath, afterPath := args[:j], args[j+1:]
importMap[afterPath] = beforePath
case "packagefile":
args := strings.TrimSpace(line[i+1:])
j := strings.Index(args, "=")
if j < 0 {
continue
}
importPath, objectPath := args[:j], args[j+1:]
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
impPkg := importedPkg{packagefile: objectPath}
buildInfo.imports[importPath] = impPkg
if otherPath, ok := importMap[importPath]; ok {
buildInfo.imports[otherPath] = impPkg
}
}
}
// log.Printf("%#v", buildInfo)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
// Produce the modified importcfg file.
// This is mainly replacing the obfuscated paths.
// Note that we range over maps, so this is non-deterministic, but that
// should not matter as the file is treated like a lookup table.
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
newCfg, err := ioutil.TempFile(sharedTempDir, "importcfg")
if err != nil {
return "", err
}
for beforePath, afterPath := range importMap {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
if isPrivate(beforePath) {
println(beforePath, afterPath)
pkg, err := listPackage(beforePath)
if err != nil {
panic(err) // shouldn't happen
}
afterPath = hashWith(pkg.GarbleActionID, afterPath)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
}
fmt.Fprintf(newCfg, "importmap %s=%s\n", beforePath, afterPath)
}
for impPath, pkg := range buildInfo.imports {
if isPrivate(impPath) {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
pkg, err := listPackage(impPath)
if err != nil {
panic(err) // shouldn't happen
}
impPath = hashWith(pkg.GarbleActionID, impPath)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
}
fmt.Fprintf(newCfg, "packagefile %s=%s\n", impPath, pkg.packagefile)
}
if err := newCfg.Close(); err != nil {
return "", err
}
return newCfg.Name(), nil
}
// recordReflectArgs collects all the objects in a package which are known to be
// used as arguments to reflect.TypeOf or reflect.ValueOf. Since we obfuscate
// one package at a time, we only detect those if the type definition and the
// reflect usage are both in the same package.
//
// The resulting map mainly contains named types and their field declarations.
func (tf *transformer) recordReflectArgs(files []*ast.File) {
tf.ignoreObjects = make(map[types.Object]bool)
visitReflectArg := func(node ast.Node) bool {
expr, _ := node.(ast.Expr) // info.TypeOf(nil) will just return nil
named := namedType(tf.info.TypeOf(expr))
if named == nil {
return true
}
obj := named.Obj()
if obj == nil || obj.Pkg() != tf.pkg {
return true
}
recordStruct(named, tf.ignoreObjects)
return true
}
visit := func(node ast.Node) bool {
if opts.GarbleLiterals {
// TODO: use transformer here?
literals.RecordUsedAsConstants(node, tf.info, tf.ignoreObjects)
}
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
fnType := tf.info.ObjectOf(sel.Sel)
if fnType.Pkg() == nil {
return true
}
if fnType.Pkg().Path() == "reflect" && (fnType.Name() == "TypeOf" || fnType.Name() == "ValueOf") {
for _, arg := range call.Args {
ast.Inspect(arg, visitReflectArg)
}
}
return true
}
for _, file := range files {
ast.Inspect(file, visit)
}
}
// transformer holds all the information and state necessary to obfuscate a
// single Go package.
type transformer struct {
// The type-checking results; the package itself, and the Info struct.
pkg *types.Package
info *types.Info
// ignoreObjects records all the objects we cannot obfuscate. An object
// is any named entity, such as a declared variable or type.
//
// So far, this map records:
//
// * Types which are used for reflection; see recordReflectArgs.
// * Identifiers used in constant expressions; see RecordUsedAsConstants.
// * Identifiers used in go:linkname directives; see handleDirectives.
// * Types or variables from external packages which were not
// obfuscated, for caching reasons; see transformGo.
ignoreObjects map[types.Object]bool
}
// transformGo garbles the provided Go syntax node.
func (tf *transformer) transformGo(file *ast.File) *ast.File {
pre := func(cursor *astutil.Cursor) bool {
node, ok := cursor.Node().(*ast.Ident)
if !ok {
return true
}
if node.Name == "_" {
return true // unnamed remains unnamed
}
if strings.HasPrefix(node.Name, "_C") || strings.Contains(node.Name, "_cgo") {
return true // don't mess with cgo-generated code
}
obj := tf.info.ObjectOf(node)
if obj == nil {
return true
}
pkg := obj.Pkg()
if vr, ok := obj.(*types.Var); ok && vr.Embedded() {
// ObjectOf returns the field for embedded struct
// fields, not the type it uses. Use the type.
named := namedType(obj.Type())
if named == nil {
return true // unnamed type (probably a basic type, e.g. int)
}
obj = named.Obj()
pkg = obj.Pkg()
}
if pkg == nil {
return true // universe scope
}
if pkg.Name() == "main" && obj.Exported() && obj.Parent() == pkg.Scope() {
// TODO: only do this when -buildmode is plugin? what
// about other -buildmode options?
return true // could be a Go plugin API
}
// We don't want to obfuscate this object.
if tf.ignoreObjects[obj] {
return true
}
path := pkg.Path()
if !isPrivate(path) {
return true // only private packages are transformed
}
// log.Printf("%#v %T", node, obj)
parentScope := obj.Parent()
switch x := obj.(type) {
case *types.Var:
if parentScope != nil && parentScope != pkg.Scope() {
// identifiers of non-global variables never show up in the binary
return true
}
// if the struct of this field was not garbled, do not garble
// any of that struct's fields
if parentScope != tf.pkg.Scope() && x.IsField() && !x.Embedded() {
parent, ok := cursor.Parent().(*ast.SelectorExpr)
if !ok {
break
}
parentType := tf.info.TypeOf(parent.X)
if parentType == nil {
break
}
named := namedType(parentType)
if named == nil {
break
}
if name := named.Obj().Name(); strings.HasPrefix(name, "_Ctype") {
// A field accessor on a cgo type, such as a C struct.
// We're not obfuscating cgo names.
return true
}
if garbledPkg, _ := garbledImport(path); garbledPkg != nil {
if garbledPkg.Scope().Lookup(named.Obj().Name()) != nil {
recordStruct(named, tf.ignoreObjects)
return true
}
}
}
case *types.TypeName:
if parentScope != pkg.Scope() {
// identifiers of non-global types never show up in the binary
return true
}
// if the type was not garbled in the package were it was defined,
// do not garble it here
if parentScope != tf.pkg.Scope() {
named := namedType(x.Type())
if named == nil {
break
}
if garbledPkg, _ := garbledImport(path); garbledPkg != nil {
if garbledPkg.Scope().Lookup(x.Name()) != nil {
recordStruct(named, tf.ignoreObjects)
return true
}
}
}
case *types.Func:
sign := obj.Type().(*types.Signature)
if obj.Exported() && sign.Recv() != nil {
return true // might implement an interface
}
if implementedOutsideGo(x) {
return true // give up in this case
}
switch node.Name {
case "main", "init", "TestMain":
return true // don't break them
}
if strings.HasPrefix(node.Name, "Test") && isTestSignature(sign) {
return true // don't break tests
}
default:
return true // we only want to rename the above
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
lpkg, err := listPackage(path)
if err != nil {
panic(err) // shouldn't happen
}
// TODO: Make this check less prone to bugs, like the one we had
// with indirect dependencies. If "path" is not our current
// package, then it must exist in buildInfo.imports. Otherwise
// we should panic.
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
if buildInfo.imports[path].packagefile != "" {
garbledPkg, err := garbledImport(path)
if err != nil {
panic(err) // shouldn't happen
}
// Check if the imported name wasn't garbled, e.g. if it's assembly.
// If the object returned from the garbled package's scope has a different type as the object
// we're searching for, they are most likely two separate objects with the same name, so ok to garble
if o := garbledPkg.Scope().Lookup(obj.Name()); o != nil && reflect.TypeOf(o) == reflect.TypeOf(obj) {
return true
}
}
origName := node.Name
_ = origName // used for debug prints below
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
node.Name = hashWith(lpkg.GarbleActionID, node.Name)
// log.Printf("%q hashed with %x to %q", origName, lpkg.GarbleActionID, node.Name)
return true
}
return astutil.Apply(file, pre, nil).(*ast.File)
}
// recordStruct adds the given named type to the map, plus all of its fields if
// it is a struct. This function is mainly used for types used via reflection,
// so we want to record their members too.
func recordStruct(named *types.Named, m map[types.Object]bool) {
m[named.Obj()] = true
strct, ok := named.Underlying().(*types.Struct)
if !ok {
return
}
for i := 0; i < strct.NumFields(); i++ {
m[strct.Field(i)] = true
}
}
// implementedOutsideGo returns whether a *types.Func does not have a body, for
// example when it's implemented in assembly, or when one uses go:linkname.
//
// Note that this function can only return true if the obj parameter was
// type-checked from source - that is, if it's the top-level package we're
// building. Dependency packages, whose type information comes from export data,
// do not differentiate these "external funcs" in any way.
func implementedOutsideGo(obj *types.Func) bool {
return obj.Type().(*types.Signature).Recv() == nil &&
(obj.Scope() != nil && obj.Scope().End() == token.NoPos)
}
// named tries to obtain the *types.Named behind a type, if there is one.
// This is useful to obtain "testing.T" from "*testing.T", or to obtain the type
// declaration object from an embedded field.
func namedType(t types.Type) *types.Named {
switch t := t.(type) {
case *types.Named:
return t
case interface{ Elem() types.Type }:
return namedType(t.Elem())
default:
return nil
}
}
// isTestSignature returns true if the signature matches "func _(*testing.T)".
func isTestSignature(sign *types.Signature) bool {
if sign.Recv() != nil {
return false // test funcs don't have receivers
}
params := sign.Params()
if params.Len() != 1 {
return false // too many parameters for a test func
}
named := namedType(params.At(0).Type())
if named == nil {
return false // the only parameter isn't named, like "string"
}
obj := named.Obj()
return obj != nil && obj.Pkg().Path() == "testing" && obj.Name() == "T"
}
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
func transformLink(args []string) ([]string, error) {
initial support for build caching (#142) As per the discussion in https://github.com/golang/go/issues/41145, it turns out that we don't need special support for build caching in -toolexec. We can simply modify the behavior of "[...]/compile -V=full" and "[...]/link -V=full" so that they include garble's own version and options in the printed build ID. The part of the build ID that matters is the last, since it's the "content ID" which is used to work out whether there is a need to redo the action (build) or not. Since cmd/go parses the last word in the output as "buildID=...", we simply add "+garble buildID=_/_/_/${hash}". The slashes let us imitate a full binary build ID, but we assume that the other components such as the action ID are not necessary, since the only reader here is cmd/go and it only consumes the content ID. The reported content ID includes the tool's original content ID, garble's own content ID from the built binary, and the garble options which modify how we obfuscate code. If any of the three changes, we should use a different build cache key. GOPRIVATE also affects caching, since a different GOPRIVATE value means that we might have to garble a different set of packages. Include tests, which mainly check that 'garble build -v' prints package lines when we expect to always need to rebuild packages, and that it prints nothing when we should be reusing the build cache even when the built binary is missing. After this change, 'go test' on Go 1.15.2 stabilizes at about 8s on my machine, whereas it used to be at around 25s before.
4 years ago
// We can't split by the ".a" extension, because cached object files
// lack any extension.
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
flags, args := splitFlagsFromArgs(args)
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
curPkg = cache.ListedPackages[cache.MainImportPath]
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
newImportCfg, err := fillBuildInfo(flags)
if err != nil {
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
return nil, err
}
// Make sure -X works with garbled identifiers. To cover both garbled
// and non-garbled names, duplicate each flag with a garbled version.
flagValueIter(flags, "-X", func(val string) {
// val is in the form of "pkg.name=str"
i := strings.IndexByte(val, '=')
if i <= 0 {
return
}
name := val[:i]
str := val[i+1:]
j := strings.LastIndexByte(name, '.')
if j <= 0 {
return
}
pkg := name[:j]
name = name[j+1:]
pkgPath := pkg
if pkgPath == "main" {
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
pkgPath = cache.MainImportPath
}
start using original action IDs (#251) When we obfuscate a name, what we do is hash the name with the action ID of the package that contains the name. To ensure that the hash changes if the garble tool changes, we used the action ID of the obfuscated build, which is different than the original action ID, as we include garble's own content ID in "go tool compile -V=full" via -toolexec. Let's call that the "obfuscated action ID". Remember that a content ID is roughly the hash of a binary or object file, and an action ID contains the hash of a package's source code plus the content IDs of its dependencies. This had the advantage that it did what we wanted. However, it had one massive drawback: when we compile a package, we only have the obfuscated action IDs of its dependencies. This is because one can't have the content ID of dependent packages before they are built. Usually, this is not a problem, because hashing a foreign name means it comes from a dependency, where we already have the obfuscated action ID. However, that's not always the case. First, go:linkname directives can point to any symbol that ends up in the binary, even if the package is not a dependency. So garble could only support linkname targets belonging to dependencies. This is at the root of why we could not obfuscate the runtime; it contains linkname directives targeting the net package, for example, which depends on runtime. Second, some other places did not have an easy access to obfuscated action IDs, like transformAsm, which had to recover it from a temporary file stored by transformCompile. Plus, this was all pretty expensive, as each toolexec sub-process had to make repeated calls to buildidOf with the object files of dependencies. We even had to use extra calls to "go list" in the case of indirect dependencies, as their export files do not appear in importcfg files. All in all, the old method was complex and expensive. A better mechanism is to use the original action IDs directly, as listed by "go list" without garble in the picture. This would mean that the hashing does not change if garble changes, meaning weaker obfuscation. To regain that property, we define the "garble action ID", which is just the original action ID hashed together with garble's own content ID. This is practically the same as the obfuscated build ID we used before, but since it doesn't go through "go tool compile -V=full" and the obfuscated build itself, we can work out *all* the garble action IDs upfront, before the obfuscated build even starts. This fixes all of our problems. Now we know all garble build IDs upfront, so a bunch of hacks can be entirely removed. Plus, since we know them upfront, we can also cache them and avoid repeated calls to "go tool buildid". While at it, make use of the new BuildID field in Go 1.16's "list -json -export". This avoids the vast majority of "go tool buildid" calls, as the only ones that remain are 2 on the garble binary itself. The numbers for Go 1.16 look very good: name old time/op new time/op delta Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6) name old bin-B new bin-B delta Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6) name old user-time/op new user-time/op delta Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
3 years ago
id := cache.ListedPackages[pkgPath].GarbleActionID
obfuscate unexported names like exported ones (#227) In 90fa325da7, the obfuscation logic was changed to use hashes for exported names, but incremental names starting at just one letter for unexported names. Presumably, this was done for the sake of binary size. I argue that this is not a good idea for the default mode for a number of reasons: 1) It makes reversing of stack traces nearly impossible for unexported names, since replacing an obfuscated name "c" with "originalName" would trigger too many false positives by matching single characters. 2) Exported and unexported names aren't different. We need to know how names were obfuscated at a later time in both cases, thanks to use cases like -ldflags=-X. Using short names for one but not the other doesn't make a lot of sense, and makes the logic inconsistent. 3) Shaving off three bytes for unexported names doesn't seem like a huge deal for the default mode, when we already have -tiny to optimize for size. This saves us a bit of work, but most importantly, simplifies the obfuscation state as we no longer need to carry privateNameMap between the compile and link stages. name old time/op new time/op delta Build-8 153ms ± 2% 150ms ± 2% ~ (p=0.065 n=6+6) name old bin-B new bin-B delta Build-8 7.09M ± 0% 7.08M ± 0% -0.24% (p=0.002 n=6+6) name old sys-time/op new sys-time/op delta Build-8 296ms ± 5% 277ms ± 6% -6.50% (p=0.026 n=6+6) name old user-time/op new user-time/op delta Build-8 562ms ± 1% 558ms ± 3% ~ (p=0.329 n=5+6) Note that I do not oppose using short names for both exported and unexported names in the future for -tiny, since reversing of stack traces will by design not work there. The code can be resurrected from the git history if we want to improve -tiny that way in the future, as we'd need to store state in header files again. Another major cleanup we can do here is to no longer use the garbledImports map. From a look at obfuscateImports, we hash a package's import path with its action ID, much like exported names, so we can simply re-do that hashing for the linker's -X flag. garbledImports does have some logic to handle duplicate package names, but it's worth noting that should not affect package paths, as they are always unique. That area of code could probably do with some simplification in the future, too. While at it, make hashWith panic if either parameter is empty. obfuscateImports was hashing the main package path without a salt due to a bug, so we want to catch those in the future. Finally, make some tiny spacing and typo tweaks to the README.
3 years ago
newName := hashWith(id, name)
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
newPkg := pkg
if pkg != "main" && isPrivate(pkg) {
newPkg = hashWith(id, pkg)
}
flags = append(flags, fmt.Sprintf("-X=%s.%s=%s", newPkg, newName, str))
})
// Ensure we strip the -buildid flag, to not leak any build IDs for the
// link operation or the main package's compilation.
flags = flagSetValue(flags, "-buildid", "")
// Strip debug information and symbol tables.
flags = append(flags, "-w", "-s")
reimplement import path obfuscation without goobj2 (#242) We used to rely on a parallel implementation of an object file parser and writer to be able to obfuscate import paths. After compiling each package, we would parse the object file, replace the import paths, and write the updated object file in-place. That worked well, in most cases. Unfortunately, it had some flaws: * Complexity. Even when most of the code is maintained in a separate module, the import_obfuscation.go file was still close to a thousand lines of code. * Go compatibility. The object file format changes between Go releases, so we were supporting Go 1.15, but not 1.16. Fixing the object file package to work with 1.16 would probably break 1.15 support. * Bugs. For example, we recently had to add a workaround for #224, since import paths containing dots after the domain would end up escaped. Another example is #190, which seems to be caused by the object file parser or writer corrupting the compiled code and causing segfaults in some rare edge cases. Instead, let's drop that method entirely, and force the compiler and linker to do the work for us. The steps necessary when compiling a package to obfuscate are: 1) Replace its "package foo" lines with the obfuscated package path. No need to separate the package path and name, since the obfuscated path does not contain slashes. 2) Replace the "-p pkg/foo" flag with the obfuscated path. 3) Replace the "import" spec lines with the obfuscated package paths, for those dependencies which were obfuscated. 4) Replace the "-importcfg [...]" file with a version that uses the obfuscated paths instead. The linker also needs that last step, since it also uses an importcfg file to find object files. There are three noteworthy drawbacks to this new method: 1) Since we no longer write object files, we can't use them to store data to be cached. As such, the -debugdir flag goes back to using the "-a" build flag to always rebuild all packages. On the plus side, that caching didn't work very well; see #176. 2) The package name "main" remains in all declarations under it, not just "func main", since we can only rename entire packages. This seems fine, as it gives little information to the end user. 3) The -tiny mode no longer sets all lines to 0, since it did that by modifying object files. As a temporary measure, we instead set all top-level declarations to be on line 1. A TODO is added to hopefully improve this again in the near future. The upside is that we get rid of all the issues mentioned before. Plus, garble now nearly works with Go 1.16, with the exception of two very minor bugs that look fixable. A follow-up PR will take care of that and start testing on 1.16. Fixes #176. Fixes #190.
3 years ago
flags = flagSetValue(flags, "-importcfg", newImportCfg)
return append(flags, args...), nil
}
func splitFlagsFromArgs(all []string) (flags, args []string) {
for i := 0; i < len(all); i++ {
arg := all[i]
if !strings.HasPrefix(arg, "-") {
return all[:i:i], all[i:]
}
if booleanFlags[arg] || strings.Contains(arg, "=") {
// Either "-bool" or "-name=value".
continue
}
// "-name value", so the next arg is part of this flag.
i++
}
return all, nil
}
// buildFlags is obtained from 'go help build' as of Go 1.15.
var buildFlags = map[string]bool{
"-a": true,
"-n": true,
"-p": true,
"-race": true,
"-msan": true,
"-v": true,
"-work": true,
"-x": true,
"-asmflags": true,
"-buildmode": true,
"-compiler": true,
"-gccgoflags": true,
"-gcflags": true,
"-installsuffix": true,
"-ldflags": true,
"-linkshared": true,
"-mod": true,
"-modcacherw": true,
"-modfile": true,
"-pkgdir": true,
"-tags": true,
"-trimpath": true,
"-toolexec": true,
}
// booleanFlags is obtained from 'go help build' and 'go help testflag' as of Go
// 1.15.
var booleanFlags = map[string]bool{
// Shared build flags.
"-a": true,
"-i": true,
"-n": true,
"-v": true,
"-x": true,
"-race": true,
"-msan": true,
"-linkshared": true,
"-modcacherw": true,
"-trimpath": true,
// Test flags (TODO: support its special -args flag)
"-c": true,
"-json": true,
"-cover": true,
"-failfast": true,
"-short": true,
"-benchmem": true,
}
func filterBuildFlags(flags []string) (filtered []string) {
for i := 0; i < len(flags); i++ {
arg := flags[i]
name := arg
if i := strings.IndexByte(arg, '='); i > 0 {
name = arg[:i]
}
buildFlag := buildFlags[name]
if buildFlag {
filtered = append(filtered, arg)
}
if booleanFlags[arg] || strings.Contains(arg, "=") {
// Either "-bool" or "-name=value".
continue
}
// "-name value", so the next arg is part of this flag.
if i++; buildFlag && i < len(flags) {
filtered = append(filtered, flags[i])
}
}
return filtered
}
// splitFlagsFromFiles splits args into a list of flag and file arguments. Since
// we can't rely on "--" being present, and we don't parse all flags upfront, we
// rely on finding the first argument that doesn't begin with "-" and that has
// the extension we expect for the list of paths.
//
// This function only makes sense for lower-level tool commands, such as
// "compile" or "link", since their arguments are predictable.
func splitFlagsFromFiles(all []string, ext string) (flags, paths []string) {
for i, arg := range all {
if !strings.HasPrefix(arg, "-") && strings.HasSuffix(arg, ext) {
return all[:i:i], all[i:]
}
}
return all, nil
5 years ago
}
// flagValue retrieves the value of a flag such as "-foo", from strings in the
// list of arguments like "-foo=bar" or "-foo" "bar". If the flag is repeated,
// the last value is returned.
func flagValue(flags []string, name string) string {
lastVal := ""
flagValueIter(flags, name, func(val string) {
lastVal = val
})
return lastVal
}
// flagValueIter retrieves all the values for a flag such as "-foo", like
// flagValue. The difference is that it allows handling complex flags, such as
// those whose values compose a list.
func flagValueIter(flags []string, name string, fn func(string)) {
for i, arg := range flags {
if val := strings.TrimPrefix(arg, name+"="); val != arg {
// -name=value
fn(val)
}
if arg == name { // -name ...
if i+1 < len(flags) {
// -name value
fn(flags[i+1])
}
}
}
}
func flagSetValue(flags []string, name, value string) []string {
for i, arg := range flags {
if strings.HasPrefix(arg, name+"=") {
// -name=value
flags[i] = name + "=" + value
return flags
}
if arg == name { // -name ...
if i+1 < len(flags) {
// -name value
flags[i+1] = value
return flags
}
return flags
}
}
return append(flags, name+"="+value)
}
func setGoPrivate() error {
if envGoPrivate == "" {
// Try 'go env' too, to query ${CONFIG}/go/env as well.
out, err := exec.Command("go", "env", "GOPRIVATE").CombinedOutput()
if err != nil {
return fmt.Errorf("%v: %s", err, out)
}
envGoPrivate = string(bytes.TrimSpace(out))
}
// If GOPRIVATE isn't set and we're in a module, use its module
// path as a GOPRIVATE default. Include a _test variant too.
if envGoPrivate == "" {
modpath, err := exec.Command("go", "list", "-m").Output()
if err == nil {
path := string(bytes.TrimSpace(modpath))
envGoPrivate = path + "," + path + "_test"
}
}
// Explicitly set GOPRIVATE, since future garble processes won't
// query 'go env' again.
os.Setenv("GOPRIVATE", envGoPrivate)
return nil
}