|
|
|
# Note that this is the only test with a module where we rely on the detection
|
deprecate using GOPRIVATE in favor of GOGARBLE (#427)
Piggybacking off of GOPRIVATE is great for a number of reasons:
* People tend to obfuscate private code, whose package paths will
generally be in GOPRIVATE already
* Its meaning and syntax are well understood
* It allows all the flexibility we need without adding our own env var
or config option
However, using GOPRIVATE directly has one main drawback.
It's fairly common to also want to obfuscate public dependencies,
to make the code in private packages even harder to follow.
However, using "GOPRIVATE=*" will result in two main downsides:
* GONOPROXY defaults to GOPRIVATE, so the proxy would be entirely disabled.
Downloading modules, such as when adding or updating dependencies,
or when the local cache is cold, can be less reliable.
* GONOSUMDB defaults to GOPRIVATE, so the sumdb would be entirely disabled.
Adding entries to go.sum, such as when adding or updating dependencies,
can be less secure.
We will continue to consume GOPRIVATE as a fallback,
but we now expect users to set GOGARBLE instead.
The new logic is documented in the README.
While here, rewrite some uses of "private" with "to obfuscate",
to make the code easier to follow and harder to misunderstand.
Fixes #276.
3 years ago
|
|
|
# of GOGARBLE.
|
|
|
|
# Also note that, since this is the only test using "real" external modules
|
|
|
|
# fetched via GOPROXY, go.mod and go.sum should declare the dependencies.
|
|
|
|
|
|
|
|
# For now, use a throwaway module download cache instead of the host machine's.
|
|
|
|
# Usually it would be fine to reuse the host's, since we expose exact copies of
|
|
|
|
# some external modules in a local proxy, allowing 'go test' to work offline.
|
|
|
|
# However, for some reason, we end up with different hashes of the code for
|
|
|
|
# modules like rsc.io/quote, and it's unclear why. It might be a txtar-addmod bug.
|
|
|
|
# In any case, not worth our time to investigate right now, and "downloading"
|
|
|
|
# modules is instant since we just copy a handful of files.
|
|
|
|
#
|
|
|
|
# To reproduce the issue, remove the env line and run:
|
|
|
|
#
|
|
|
|
# go clean -modcache && go get -d rsc.io/quote@v1.5.2 && go test -short
|
|
|
|
env GOMODCACHE=$WORK/modcache
|
|
|
|
|
|
|
|
garble build -tags buildtag
|
|
|
|
exec ./main
|
|
|
|
cmp stdout main.stdout
|
|
|
|
|
testdata: use longer Go filenames for binsubstr
Every now and then, a CI run would fail:
FAIL: testdata/scripts/reflect.txt:7: unexpected match for ["main.go"] in main
These were rare, and very hard to reproduce or debug.
My best guess is that, since "main.go" is a short string and we use
random eight-character obfuscated filenames ending with ".go", it was
possible that the random filename happened to end in "main" in some
cases.
Given the base64 encoding, the chances of a single suffix collision are
about 0.000006%. Note, however, that a single obfuscated build will most
likely obfuscate many filenames, especially for the tests obfuscating
multiple packages. For a single CI run with many tests across three OSs,
the chances of any collision are likely very low, but realistic.
All this has a simple fix: use longer filenames to match with. We choose
"garble_main.go" since it's long enough, but also because it's still
clear it's a "main" Go file, and it's very unlikely to cause conflicts
with filenames in upstream Go given the "garble_" prefix.
4 years ago
|
|
|
! binsubstr main$exe 'ImportedVar' 'ImportedConst' 'ImportedFunc' 'garble_main.go' 'test/main' 'importedpkg.' 'NormalStruct' 'normalUnexportedField'
|
|
|
|
|
|
|
|
[short] stop # checking that the build is reproducible is slow
|
|
|
|
|
|
|
|
# Also check that the binary is reproducible when many imports are involved.
|
initial support for build caching (#142)
As per the discussion in https://github.com/golang/go/issues/41145, it
turns out that we don't need special support for build caching in
-toolexec. We can simply modify the behavior of "[...]/compile -V=full"
and "[...]/link -V=full" so that they include garble's own version and
options in the printed build ID.
The part of the build ID that matters is the last, since it's the
"content ID" which is used to work out whether there is a need to redo
the action (build) or not. Since cmd/go parses the last word in the
output as "buildID=...", we simply add "+garble buildID=_/_/_/${hash}".
The slashes let us imitate a full binary build ID, but we assume that
the other components such as the action ID are not necessary, since the
only reader here is cmd/go and it only consumes the content ID.
The reported content ID includes the tool's original content ID,
garble's own content ID from the built binary, and the garble options
which modify how we obfuscate code. If any of the three changes, we
should use a different build cache key. GOPRIVATE also affects caching,
since a different GOPRIVATE value means that we might have to garble a
different set of packages.
Include tests, which mainly check that 'garble build -v' prints package
lines when we expect to always need to rebuild packages, and that it
prints nothing when we should be reusing the build cache even when the
built binary is missing.
After this change, 'go test' on Go 1.15.2 stabilizes at about 8s on my
machine, whereas it used to be at around 25s before.
5 years ago
|
|
|
# No packages should be rebuilt either, thanks to the build cache.
|
|
|
|
cp main$exe main_old$exe
|
|
|
|
rm main$exe
|
initial support for build caching (#142)
As per the discussion in https://github.com/golang/go/issues/41145, it
turns out that we don't need special support for build caching in
-toolexec. We can simply modify the behavior of "[...]/compile -V=full"
and "[...]/link -V=full" so that they include garble's own version and
options in the printed build ID.
The part of the build ID that matters is the last, since it's the
"content ID" which is used to work out whether there is a need to redo
the action (build) or not. Since cmd/go parses the last word in the
output as "buildID=...", we simply add "+garble buildID=_/_/_/${hash}".
The slashes let us imitate a full binary build ID, but we assume that
the other components such as the action ID are not necessary, since the
only reader here is cmd/go and it only consumes the content ID.
The reported content ID includes the tool's original content ID,
garble's own content ID from the built binary, and the garble options
which modify how we obfuscate code. If any of the three changes, we
should use a different build cache key. GOPRIVATE also affects caching,
since a different GOPRIVATE value means that we might have to garble a
different set of packages.
Include tests, which mainly check that 'garble build -v' prints package
lines when we expect to always need to rebuild packages, and that it
prints nothing when we should be reusing the build cache even when the
built binary is missing.
After this change, 'go test' on Go 1.15.2 stabilizes at about 8s on my
machine, whereas it used to be at around 25s before.
5 years ago
|
|
|
garble build -tags buildtag -v
|
|
|
|
! stderr .
|
|
|
|
bincmp main$exe main_old$exe
|
|
|
|
|
|
|
|
go build -tags buildtag
|
|
|
|
exec ./main
|
|
|
|
cmp stdout main.stdout
|
|
|
|
|
|
|
|
# Check that -literals doesn't break anything.
|
|
|
|
# Also check that a different form of -tags still works.
|
|
|
|
garble -literals build --tags=buildtag
|
|
|
|
exec ./main
|
|
|
|
cmp stdout main.stdout
|
|
|
|
|
|
|
|
-- go.mod --
|
|
|
|
module test/main
|
|
|
|
|
|
|
|
go 1.17
|
|
|
|
|
make the handling of import paths more robust
First, make isPrivate panic on malformed import paths, since that should
never happen. This catches the errors that some users had run into with
packages like gopkg.in/yaml.v2 and github.com/satori/go.uuid:
panic: malformed import path "gopkg.in/garbletest%2ev2": invalid char '%'
This seems to trigger when a module path contains a dot after the first
element, *and* that module is fetched via the proxy. This results in the
toolchain URL-encoding the second dot, and garble ends up seeing that
encoded path.
We reproduce this behavior with a fake gopkg.in module added to the test
module proxy. Using yaml.v2 directly would have been easier, but it's
pretty large. Note that we tried a replace directive, but that does not
trigger the URL-encoding bug.
Also note that we do not obfuscate the gopkg.in package; that's fine, as
the isPrivate path validity check catches the bug either way.
For now, make initImport use url.PathUnescape to work around this issue.
The underlying bug is likely in either the goobj2 fork, or in the
upstream Go toolchain itself.
hashImport also gives a better error if it cannot find a package now,
rather than just an "empty seed" panic.
Finally, the sanity check in isPrivate unearthed the fact that we do not
support garbling test packages at all, since they were invalid paths
which never matched GOPRIVATE. Add an explicit check and TODO about
that.
Fixes #224.
Fixes #228.
4 years ago
|
|
|
require (
|
|
|
|
gopkg.in/garbletest.v2 v2.999.0
|
|
|
|
rsc.io/quote v1.5.2
|
|
|
|
)
|
|
|
|
|
|
|
|
require (
|
|
|
|
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c // indirect
|
|
|
|
rsc.io/sampler v1.3.0 // indirect
|
|
|
|
rsc.io/testonly v1.0.0 // indirect
|
make the handling of import paths more robust
First, make isPrivate panic on malformed import paths, since that should
never happen. This catches the errors that some users had run into with
packages like gopkg.in/yaml.v2 and github.com/satori/go.uuid:
panic: malformed import path "gopkg.in/garbletest%2ev2": invalid char '%'
This seems to trigger when a module path contains a dot after the first
element, *and* that module is fetched via the proxy. This results in the
toolchain URL-encoding the second dot, and garble ends up seeing that
encoded path.
We reproduce this behavior with a fake gopkg.in module added to the test
module proxy. Using yaml.v2 directly would have been easier, but it's
pretty large. Note that we tried a replace directive, but that does not
trigger the URL-encoding bug.
Also note that we do not obfuscate the gopkg.in package; that's fine, as
the isPrivate path validity check catches the bug either way.
For now, make initImport use url.PathUnescape to work around this issue.
The underlying bug is likely in either the goobj2 fork, or in the
upstream Go toolchain itself.
hashImport also gives a better error if it cannot find a package now,
rather than just an "empty seed" panic.
Finally, the sanity check in isPrivate unearthed the fact that we do not
support garbling test packages at all, since they were invalid paths
which never matched GOPRIVATE. Add an explicit check and TODO about
that.
Fixes #224.
Fixes #228.
4 years ago
|
|
|
)
|
|
|
|
-- go.sum --
|
|
|
|
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:pvCbr/wm8HzDD3fVywevekufpn6tCGPY3spdHeZJEsw=
|
|
|
|
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
|
|
|
gopkg.in/garbletest.v2 v2.999.0 h1:XHlBQi3MAcJL2fjNiEPAPAilkzc7hAv4vyyjY5w+IUY=
|
|
|
|
gopkg.in/garbletest.v2 v2.999.0/go.mod h1:MI9QqKJD8i8oL8mW/bR0qq19/VuezEdJbVvl2B8Pa40=
|
|
|
|
rsc.io/quote v1.5.2 h1:3fEykkD9k7lYzXqCYrwGAf7iNhbk4yCjHmKBN9td4L0=
|
|
|
|
rsc.io/quote v1.5.2/go.mod h1:LzX7hefJvL54yjefDEDHNONDjII0t9xZLPXsUe+TKr0=
|
|
|
|
rsc.io/sampler v1.3.0 h1:+lXbM7nYGGOYhnMEiMtjCwcUfjn4sajeMm15HMT6SnU=
|
|
|
|
rsc.io/sampler v1.3.0/go.mod h1:T1hPZKmBbMNahiBKFy5HrXp6adAjACjK9JXDnKaTXpA=
|
|
|
|
rsc.io/testonly v1.0.0 h1:K/VWHdO+Jv7woUXG0GzVNx1czBXUt3Ib1deaMn+xk64=
|
|
|
|
rsc.io/testonly v1.0.0/go.mod h1:OqmGbIFOcF+XrFReLOGZ6BhMM7uMBiQwZsyNmh74SzY=
|
testdata: use longer Go filenames for binsubstr
Every now and then, a CI run would fail:
FAIL: testdata/scripts/reflect.txt:7: unexpected match for ["main.go"] in main
These were rare, and very hard to reproduce or debug.
My best guess is that, since "main.go" is a short string and we use
random eight-character obfuscated filenames ending with ".go", it was
possible that the random filename happened to end in "main" in some
cases.
Given the base64 encoding, the chances of a single suffix collision are
about 0.000006%. Note, however, that a single obfuscated build will most
likely obfuscate many filenames, especially for the tests obfuscating
multiple packages. For a single CI run with many tests across three OSs,
the chances of any collision are likely very low, but realistic.
All this has a simple fix: use longer filenames to match with. We choose
"garble_main.go" since it's long enough, but also because it's still
clear it's a "main" Go file, and it's very unlikely to cause conflicts
with filenames in upstream Go given the "garble_" prefix.
4 years ago
|
|
|
-- garble_main.go --
|
|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
"strings"
|
|
|
|
|
reimplement import path obfuscation without goobj2 (#242)
We used to rely on a parallel implementation of an object file parser
and writer to be able to obfuscate import paths. After compiling each
package, we would parse the object file, replace the import paths, and
write the updated object file in-place.
That worked well, in most cases. Unfortunately, it had some flaws:
* Complexity. Even when most of the code is maintained in a separate
module, the import_obfuscation.go file was still close to a thousand
lines of code.
* Go compatibility. The object file format changes between Go releases,
so we were supporting Go 1.15, but not 1.16. Fixing the object file
package to work with 1.16 would probably break 1.15 support.
* Bugs. For example, we recently had to add a workaround for #224, since
import paths containing dots after the domain would end up escaped.
Another example is #190, which seems to be caused by the object file
parser or writer corrupting the compiled code and causing segfaults in
some rare edge cases.
Instead, let's drop that method entirely, and force the compiler and
linker to do the work for us. The steps necessary when compiling a
package to obfuscate are:
1) Replace its "package foo" lines with the obfuscated package path. No
need to separate the package path and name, since the obfuscated path
does not contain slashes.
2) Replace the "-p pkg/foo" flag with the obfuscated path.
3) Replace the "import" spec lines with the obfuscated package paths,
for those dependencies which were obfuscated.
4) Replace the "-importcfg [...]" file with a version that uses the
obfuscated paths instead.
The linker also needs that last step, since it also uses an importcfg
file to find object files.
There are three noteworthy drawbacks to this new method:
1) Since we no longer write object files, we can't use them to store
data to be cached. As such, the -debugdir flag goes back to using the
"-a" build flag to always rebuild all packages. On the plus side,
that caching didn't work very well; see #176.
2) The package name "main" remains in all declarations under it, not
just "func main", since we can only rename entire packages. This
seems fine, as it gives little information to the end user.
3) The -tiny mode no longer sets all lines to 0, since it did that by
modifying object files. As a temporary measure, we instead set all
top-level declarations to be on line 1. A TODO is added to hopefully
improve this again in the near future.
The upside is that we get rid of all the issues mentioned before. Plus,
garble now nearly works with Go 1.16, with the exception of two very
minor bugs that look fixable. A follow-up PR will take care of that and
start testing on 1.16.
Fixes #176.
Fixes #190.
4 years ago
|
|
|
"test/main/importedpkg"
|
|
|
|
|
|
|
|
"rsc.io/quote"
|
make the handling of import paths more robust
First, make isPrivate panic on malformed import paths, since that should
never happen. This catches the errors that some users had run into with
packages like gopkg.in/yaml.v2 and github.com/satori/go.uuid:
panic: malformed import path "gopkg.in/garbletest%2ev2": invalid char '%'
This seems to trigger when a module path contains a dot after the first
element, *and* that module is fetched via the proxy. This results in the
toolchain URL-encoding the second dot, and garble ends up seeing that
encoded path.
We reproduce this behavior with a fake gopkg.in module added to the test
module proxy. Using yaml.v2 directly would have been easier, but it's
pretty large. Note that we tried a replace directive, but that does not
trigger the URL-encoding bug.
Also note that we do not obfuscate the gopkg.in package; that's fine, as
the isPrivate path validity check catches the bug either way.
For now, make initImport use url.PathUnescape to work around this issue.
The underlying bug is likely in either the goobj2 fork, or in the
upstream Go toolchain itself.
hashImport also gives a better error if it cannot find a package now,
rather than just an "empty seed" panic.
Finally, the sanity check in isPrivate unearthed the fact that we do not
support garbling test packages at all, since they were invalid paths
which never matched GOPRIVATE. Add an explicit check and TODO about
that.
Fixes #224.
Fixes #228.
4 years ago
|
|
|
garbletest "gopkg.in/garbletest.v2"
|
|
|
|
)
|
|
|
|
|
|
|
|
func main() {
|
reimplement import path obfuscation without goobj2 (#242)
We used to rely on a parallel implementation of an object file parser
and writer to be able to obfuscate import paths. After compiling each
package, we would parse the object file, replace the import paths, and
write the updated object file in-place.
That worked well, in most cases. Unfortunately, it had some flaws:
* Complexity. Even when most of the code is maintained in a separate
module, the import_obfuscation.go file was still close to a thousand
lines of code.
* Go compatibility. The object file format changes between Go releases,
so we were supporting Go 1.15, but not 1.16. Fixing the object file
package to work with 1.16 would probably break 1.15 support.
* Bugs. For example, we recently had to add a workaround for #224, since
import paths containing dots after the domain would end up escaped.
Another example is #190, which seems to be caused by the object file
parser or writer corrupting the compiled code and causing segfaults in
some rare edge cases.
Instead, let's drop that method entirely, and force the compiler and
linker to do the work for us. The steps necessary when compiling a
package to obfuscate are:
1) Replace its "package foo" lines with the obfuscated package path. No
need to separate the package path and name, since the obfuscated path
does not contain slashes.
2) Replace the "-p pkg/foo" flag with the obfuscated path.
3) Replace the "import" spec lines with the obfuscated package paths,
for those dependencies which were obfuscated.
4) Replace the "-importcfg [...]" file with a version that uses the
obfuscated paths instead.
The linker also needs that last step, since it also uses an importcfg
file to find object files.
There are three noteworthy drawbacks to this new method:
1) Since we no longer write object files, we can't use them to store
data to be cached. As such, the -debugdir flag goes back to using the
"-a" build flag to always rebuild all packages. On the plus side,
that caching didn't work very well; see #176.
2) The package name "main" remains in all declarations under it, not
just "func main", since we can only rename entire packages. This
seems fine, as it gives little information to the end user.
3) The -tiny mode no longer sets all lines to 0, since it did that by
modifying object files. As a temporary measure, we instead set all
top-level declarations to be on line 1. A TODO is added to hopefully
improve this again in the near future.
The upside is that we get rid of all the issues mentioned before. Plus,
garble now nearly works with Go 1.16, with the exception of two very
minor bugs that look fixable. A follow-up PR will take care of that and
start testing on 1.16.
Fixes #176.
Fixes #190.
4 years ago
|
|
|
fmt.Println(importedpkg.ImportedVar)
|
|
|
|
fmt.Println(importedpkg.ImportedConst)
|
|
|
|
fmt.Println(importedpkg.ImportedFunc('x'))
|
|
|
|
normal := importedpkg.NormalStruct{SharedName: 3}
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
normal.IndirectStruct.Field = 23
|
|
|
|
fmt.Println(normal)
|
|
|
|
|
|
|
|
fmt.Println(quote.Go())
|
make the handling of import paths more robust
First, make isPrivate panic on malformed import paths, since that should
never happen. This catches the errors that some users had run into with
packages like gopkg.in/yaml.v2 and github.com/satori/go.uuid:
panic: malformed import path "gopkg.in/garbletest%2ev2": invalid char '%'
This seems to trigger when a module path contains a dot after the first
element, *and* that module is fetched via the proxy. This results in the
toolchain URL-encoding the second dot, and garble ends up seeing that
encoded path.
We reproduce this behavior with a fake gopkg.in module added to the test
module proxy. Using yaml.v2 directly would have been easier, but it's
pretty large. Note that we tried a replace directive, but that does not
trigger the URL-encoding bug.
Also note that we do not obfuscate the gopkg.in package; that's fine, as
the isPrivate path validity check catches the bug either way.
For now, make initImport use url.PathUnescape to work around this issue.
The underlying bug is likely in either the goobj2 fork, or in the
upstream Go toolchain itself.
hashImport also gives a better error if it cannot find a package now,
rather than just an "empty seed" panic.
Finally, the sanity check in isPrivate unearthed the fact that we do not
support garbling test packages at all, since they were invalid paths
which never matched GOPRIVATE. Add an explicit check and TODO about
that.
Fixes #224.
Fixes #228.
4 years ago
|
|
|
garbletest.Test()
|
|
|
|
}
|
|
|
|
|
|
|
|
func printfWithoutPackage(format string, v interface{}) {
|
|
|
|
fmt.Print(strings.Split(fmt.Sprintf(format, v), ".")[1])
|
|
|
|
}
|
|
|
|
-- notag_fail.go --
|
|
|
|
// +build !buildtag
|
|
|
|
|
|
|
|
package main
|
|
|
|
|
|
|
|
var foo int = "should be omitted by -tags"
|
|
|
|
-- withtag_success.go --
|
|
|
|
// +build buildtag
|
|
|
|
|
|
|
|
package main
|
|
|
|
|
|
|
|
import "fmt"
|
|
|
|
|
|
|
|
func init() { fmt.Println("buildtag init func") }
|
|
|
|
-- differentpkg_unnamed.go --
|
|
|
|
package main
|
|
|
|
|
|
|
|
import "test/main/different-pkg-name"
|
|
|
|
|
|
|
|
var _ = actualpkgname.Noop
|
|
|
|
-- differentpkg_named.go --
|
|
|
|
package main
|
|
|
|
|
|
|
|
import named "test/main/different-pkg-name"
|
|
|
|
|
|
|
|
var _ = named.Noop
|
reimplement import path obfuscation without goobj2 (#242)
We used to rely on a parallel implementation of an object file parser
and writer to be able to obfuscate import paths. After compiling each
package, we would parse the object file, replace the import paths, and
write the updated object file in-place.
That worked well, in most cases. Unfortunately, it had some flaws:
* Complexity. Even when most of the code is maintained in a separate
module, the import_obfuscation.go file was still close to a thousand
lines of code.
* Go compatibility. The object file format changes between Go releases,
so we were supporting Go 1.15, but not 1.16. Fixing the object file
package to work with 1.16 would probably break 1.15 support.
* Bugs. For example, we recently had to add a workaround for #224, since
import paths containing dots after the domain would end up escaped.
Another example is #190, which seems to be caused by the object file
parser or writer corrupting the compiled code and causing segfaults in
some rare edge cases.
Instead, let's drop that method entirely, and force the compiler and
linker to do the work for us. The steps necessary when compiling a
package to obfuscate are:
1) Replace its "package foo" lines with the obfuscated package path. No
need to separate the package path and name, since the obfuscated path
does not contain slashes.
2) Replace the "-p pkg/foo" flag with the obfuscated path.
3) Replace the "import" spec lines with the obfuscated package paths,
for those dependencies which were obfuscated.
4) Replace the "-importcfg [...]" file with a version that uses the
obfuscated paths instead.
The linker also needs that last step, since it also uses an importcfg
file to find object files.
There are three noteworthy drawbacks to this new method:
1) Since we no longer write object files, we can't use them to store
data to be cached. As such, the -debugdir flag goes back to using the
"-a" build flag to always rebuild all packages. On the plus side,
that caching didn't work very well; see #176.
2) The package name "main" remains in all declarations under it, not
just "func main", since we can only rename entire packages. This
seems fine, as it gives little information to the end user.
3) The -tiny mode no longer sets all lines to 0, since it did that by
modifying object files. As a temporary measure, we instead set all
top-level declarations to be on line 1. A TODO is added to hopefully
improve this again in the near future.
The upside is that we get rid of all the issues mentioned before. Plus,
garble now nearly works with Go 1.16, with the exception of two very
minor bugs that look fixable. A follow-up PR will take care of that and
start testing on 1.16.
Fixes #176.
Fixes #190.
4 years ago
|
|
|
-- importedpkg/imported.go --
|
|
|
|
package importedpkg
|
|
|
|
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
import (
|
reimplement import path obfuscation without goobj2 (#242)
We used to rely on a parallel implementation of an object file parser
and writer to be able to obfuscate import paths. After compiling each
package, we would parse the object file, replace the import paths, and
write the updated object file in-place.
That worked well, in most cases. Unfortunately, it had some flaws:
* Complexity. Even when most of the code is maintained in a separate
module, the import_obfuscation.go file was still close to a thousand
lines of code.
* Go compatibility. The object file format changes between Go releases,
so we were supporting Go 1.15, but not 1.16. Fixing the object file
package to work with 1.16 would probably break 1.15 support.
* Bugs. For example, we recently had to add a workaround for #224, since
import paths containing dots after the domain would end up escaped.
Another example is #190, which seems to be caused by the object file
parser or writer corrupting the compiled code and causing segfaults in
some rare edge cases.
Instead, let's drop that method entirely, and force the compiler and
linker to do the work for us. The steps necessary when compiling a
package to obfuscate are:
1) Replace its "package foo" lines with the obfuscated package path. No
need to separate the package path and name, since the obfuscated path
does not contain slashes.
2) Replace the "-p pkg/foo" flag with the obfuscated path.
3) Replace the "import" spec lines with the obfuscated package paths,
for those dependencies which were obfuscated.
4) Replace the "-importcfg [...]" file with a version that uses the
obfuscated paths instead.
The linker also needs that last step, since it also uses an importcfg
file to find object files.
There are three noteworthy drawbacks to this new method:
1) Since we no longer write object files, we can't use them to store
data to be cached. As such, the -debugdir flag goes back to using the
"-a" build flag to always rebuild all packages. On the plus side,
that caching didn't work very well; see #176.
2) The package name "main" remains in all declarations under it, not
just "func main", since we can only rename entire packages. This
seems fine, as it gives little information to the end user.
3) The -tiny mode no longer sets all lines to 0, since it did that by
modifying object files. As a temporary measure, we instead set all
top-level declarations to be on line 1. A TODO is added to hopefully
improve this again in the near future.
The upside is that we get rid of all the issues mentioned before. Plus,
garble now nearly works with Go 1.16, with the exception of two very
minor bugs that look fixable. A follow-up PR will take care of that and
start testing on 1.16.
Fixes #176.
Fixes #190.
4 years ago
|
|
|
"test/main/importedpkg/indirect"
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
)
|
|
|
|
|
|
|
|
var ImportedVar = "imported var value"
|
|
|
|
|
|
|
|
const ImportedConst = "imported const value"
|
|
|
|
|
|
|
|
func ImportedFunc(param rune) string {
|
|
|
|
return string(param)
|
|
|
|
}
|
|
|
|
|
|
|
|
const SharedName = 2
|
|
|
|
|
|
|
|
type NormalStruct struct {
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
SharedName int
|
|
|
|
IndirectStruct indirect.Indirect
|
|
|
|
normalUnexportedField int
|
|
|
|
}
|
|
|
|
|
reimplement import path obfuscation without goobj2 (#242)
We used to rely on a parallel implementation of an object file parser
and writer to be able to obfuscate import paths. After compiling each
package, we would parse the object file, replace the import paths, and
write the updated object file in-place.
That worked well, in most cases. Unfortunately, it had some flaws:
* Complexity. Even when most of the code is maintained in a separate
module, the import_obfuscation.go file was still close to a thousand
lines of code.
* Go compatibility. The object file format changes between Go releases,
so we were supporting Go 1.15, but not 1.16. Fixing the object file
package to work with 1.16 would probably break 1.15 support.
* Bugs. For example, we recently had to add a workaround for #224, since
import paths containing dots after the domain would end up escaped.
Another example is #190, which seems to be caused by the object file
parser or writer corrupting the compiled code and causing segfaults in
some rare edge cases.
Instead, let's drop that method entirely, and force the compiler and
linker to do the work for us. The steps necessary when compiling a
package to obfuscate are:
1) Replace its "package foo" lines with the obfuscated package path. No
need to separate the package path and name, since the obfuscated path
does not contain slashes.
2) Replace the "-p pkg/foo" flag with the obfuscated path.
3) Replace the "import" spec lines with the obfuscated package paths,
for those dependencies which were obfuscated.
4) Replace the "-importcfg [...]" file with a version that uses the
obfuscated paths instead.
The linker also needs that last step, since it also uses an importcfg
file to find object files.
There are three noteworthy drawbacks to this new method:
1) Since we no longer write object files, we can't use them to store
data to be cached. As such, the -debugdir flag goes back to using the
"-a" build flag to always rebuild all packages. On the plus side,
that caching didn't work very well; see #176.
2) The package name "main" remains in all declarations under it, not
just "func main", since we can only rename entire packages. This
seems fine, as it gives little information to the end user.
3) The -tiny mode no longer sets all lines to 0, since it did that by
modifying object files. As a temporary measure, we instead set all
top-level declarations to be on line 1. A TODO is added to hopefully
improve this again in the near future.
The upside is that we get rid of all the issues mentioned before. Plus,
garble now nearly works with Go 1.16, with the exception of two very
minor bugs that look fixable. A follow-up PR will take care of that and
start testing on 1.16.
Fixes #176.
Fixes #190.
4 years ago
|
|
|
-- importedpkg/indirect/indirect.go --
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
package indirect
|
|
|
|
|
|
|
|
type Indirect struct {
|
|
|
|
Field int
|
|
|
|
}
|
|
|
|
|
|
|
|
-- different-pkg-name/pkg.go --
|
|
|
|
package actualpkgname
|
|
|
|
|
|
|
|
var Noop int
|
|
|
|
|
|
|
|
-- main.stdout --
|
|
|
|
buildtag init func
|
|
|
|
imported var value
|
|
|
|
imported const value
|
|
|
|
x
|
fix garbling names belonging to indirect imports (#203)
main.go includes a lengthy comment that documents this edge case, why it
happened, and how we are fixing it. To summarize, we should no longer
error with a build error in those cases. Read the comment for details.
A few other minor changes were done to allow writing this patch.
First, the actionID and contentID funcs were renamed, since they started
to collide with variable names.
Second, the logging has been improved a bit, which allowed me to debug
the issue.
Third, the "cache" global shared by all garble sub-processes now
includes the necessary parameters to run "go list -toolexec", including
the path to garble and the build flags being used.
Thanks to lu4p for writing a test case, which also applied gofmt to that
testdata Go file.
Fixes #180.
Closes #181, since it includes its test case.
4 years ago
|
|
|
{3 {23} 0}
|
|
|
|
Don't communicate by sharing memory, share memory by communicating.
|