|
|
|
// Copyright (c) 2019, The Garble Authors.
|
|
|
|
// See LICENSE for licensing information.
|
|
|
|
|
|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bufio"
|
|
|
|
"bytes"
|
|
|
|
"encoding/json"
|
|
|
|
"fmt"
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
"go/ast"
|
|
|
|
"go/parser"
|
|
|
|
"go/token"
|
|
|
|
"io"
|
|
|
|
"os"
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
"path/filepath"
|
|
|
|
"strings"
|
|
|
|
)
|
|
|
|
|
|
|
|
// commandReverse implements "garble reverse".
|
|
|
|
func commandReverse(args []string) error {
|
|
|
|
flags, args := splitFlagsFromArgs(args)
|
|
|
|
mainPkg := "."
|
|
|
|
if len(args) > 0 {
|
|
|
|
mainPkg = args[0]
|
|
|
|
args = args[1:]
|
|
|
|
}
|
|
|
|
|
|
|
|
listArgs := []string{
|
|
|
|
"-json",
|
|
|
|
"-deps",
|
|
|
|
"-export",
|
|
|
|
}
|
|
|
|
listArgs = append(listArgs, flags...)
|
|
|
|
listArgs = append(listArgs, mainPkg)
|
avoid one more call to 'go tool buildid' (#253)
We use it to get the content ID of garble's binary, which is used for
both the garble action IDs, as well as 'go tool compile -V=full'.
Since those two happen in separate processes, both used to call 'go tool
buildid' separately. Store it in the gob cache the first time, and reuse
it the second time.
Since each call to cmd/go costs about 10ms (new process, running its
many init funcs, etc), this results in a nice speed-up for our small
benchmark. Most builds will take many seconds though, so note that a
~15ms speedup there will likely not be noticeable.
While at it, simplify the buildInfo global, as now it just contains a
map representation of the -importcfg contents. It now has better names,
docs, and a simpler representation.
We also stop using the term "garbled import", as it was a bit confusing.
"obfuscated types.Package" is a much better description.
name old time/op new time/op delta
Build-8 106ms ± 1% 92ms ± 0% -14.07% (p=0.010 n=6+4)
name old bin-B new bin-B delta
Build-8 6.60M ± 0% 6.60M ± 0% -0.01% (p=0.002 n=6+6)
name old sys-time/op new sys-time/op delta
Build-8 208ms ± 5% 149ms ± 3% -28.27% (p=0.004 n=6+5)
name old user-time/op new user-time/op delta
Build-8 433ms ± 3% 384ms ± 3% -11.35% (p=0.002 n=6+6)
4 years ago
|
|
|
// TODO: We most likely no longer need this "list -toolexec" call, since
|
|
|
|
// we use the original build IDs.
|
|
|
|
cmd, err := toolexecCmd("list", listArgs)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
start using original action IDs (#251)
When we obfuscate a name, what we do is hash the name with the action ID
of the package that contains the name. To ensure that the hash changes
if the garble tool changes, we used the action ID of the obfuscated
build, which is different than the original action ID, as we include
garble's own content ID in "go tool compile -V=full" via -toolexec.
Let's call that the "obfuscated action ID". Remember that a content ID
is roughly the hash of a binary or object file, and an action ID
contains the hash of a package's source code plus the content IDs of its
dependencies.
This had the advantage that it did what we wanted. However, it had one
massive drawback: when we compile a package, we only have the obfuscated
action IDs of its dependencies. This is because one can't have the
content ID of dependent packages before they are built.
Usually, this is not a problem, because hashing a foreign name means it
comes from a dependency, where we already have the obfuscated action ID.
However, that's not always the case.
First, go:linkname directives can point to any symbol that ends up in
the binary, even if the package is not a dependency. So garble could
only support linkname targets belonging to dependencies. This is at the
root of why we could not obfuscate the runtime; it contains linkname
directives targeting the net package, for example, which depends on runtime.
Second, some other places did not have an easy access to obfuscated
action IDs, like transformAsm, which had to recover it from a temporary
file stored by transformCompile.
Plus, this was all pretty expensive, as each toolexec sub-process had to
make repeated calls to buildidOf with the object files of dependencies.
We even had to use extra calls to "go list" in the case of indirect
dependencies, as their export files do not appear in importcfg files.
All in all, the old method was complex and expensive. A better mechanism
is to use the original action IDs directly, as listed by "go list"
without garble in the picture.
This would mean that the hashing does not change if garble changes,
meaning weaker obfuscation. To regain that property, we define the
"garble action ID", which is just the original action ID hashed together
with garble's own content ID.
This is practically the same as the obfuscated build ID we used before,
but since it doesn't go through "go tool compile -V=full" and the
obfuscated build itself, we can work out *all* the garble action IDs
upfront, before the obfuscated build even starts.
This fixes all of our problems. Now we know all garble build IDs
upfront, so a bunch of hacks can be entirely removed. Plus, since we
know them upfront, we can also cache them and avoid repeated calls to
"go tool buildid".
While at it, make use of the new BuildID field in Go 1.16's "list -json
-export". This avoids the vast majority of "go tool buildid" calls, as
the only ones that remain are 2 on the garble binary itself.
The numbers for Go 1.16 look very good:
name old time/op new time/op delta
Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6)
name old bin-B new bin-B delta
Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6)
name old sys-time/op new sys-time/op delta
Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6)
name old user-time/op new user-time/op delta
Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
4 years ago
|
|
|
curPkg = cache.ListedPackages[cache.MainImportPath]
|
|
|
|
|
|
|
|
stdout, err := cmd.StdoutPipe()
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
var stderr bytes.Buffer
|
|
|
|
cmd.Stderr = &stderr
|
|
|
|
|
|
|
|
if err := cmd.Start(); err != nil {
|
|
|
|
return fmt.Errorf("go list error: %v", err)
|
|
|
|
}
|
|
|
|
mainPkgPath := ""
|
|
|
|
dec := json.NewDecoder(stdout)
|
|
|
|
var privatePkgPaths []string
|
|
|
|
for dec.More() {
|
|
|
|
var pkg listedPackage
|
|
|
|
if err := dec.Decode(&pkg); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
if pkg.Export == "" {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
if pkg.Name == "main" {
|
|
|
|
if mainPkgPath != "" {
|
|
|
|
return fmt.Errorf("found two main packages: %s %s", mainPkgPath, pkg.ImportPath)
|
|
|
|
}
|
|
|
|
mainPkgPath = pkg.ImportPath
|
|
|
|
}
|
|
|
|
if isPrivate(pkg.ImportPath) {
|
|
|
|
privatePkgPaths = append(privatePkgPaths, pkg.ImportPath)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := cmd.Wait(); err != nil {
|
|
|
|
return fmt.Errorf("go list error: %v: %s", err, stderr.Bytes())
|
|
|
|
}
|
|
|
|
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
// A package's names are generally hashed with the action ID of its
|
|
|
|
// obfuscated build. We recorded those action IDs above.
|
|
|
|
// Note that we parse Go files directly to obtain the names, since the
|
|
|
|
// export data only exposes exported names. Parsing Go files is cheap,
|
|
|
|
// so it's unnecessary to try to avoid this cost.
|
|
|
|
var replaces []string
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
fset := token.NewFileSet()
|
|
|
|
|
|
|
|
for _, pkgPath := range privatePkgPaths {
|
start using original action IDs (#251)
When we obfuscate a name, what we do is hash the name with the action ID
of the package that contains the name. To ensure that the hash changes
if the garble tool changes, we used the action ID of the obfuscated
build, which is different than the original action ID, as we include
garble's own content ID in "go tool compile -V=full" via -toolexec.
Let's call that the "obfuscated action ID". Remember that a content ID
is roughly the hash of a binary or object file, and an action ID
contains the hash of a package's source code plus the content IDs of its
dependencies.
This had the advantage that it did what we wanted. However, it had one
massive drawback: when we compile a package, we only have the obfuscated
action IDs of its dependencies. This is because one can't have the
content ID of dependent packages before they are built.
Usually, this is not a problem, because hashing a foreign name means it
comes from a dependency, where we already have the obfuscated action ID.
However, that's not always the case.
First, go:linkname directives can point to any symbol that ends up in
the binary, even if the package is not a dependency. So garble could
only support linkname targets belonging to dependencies. This is at the
root of why we could not obfuscate the runtime; it contains linkname
directives targeting the net package, for example, which depends on runtime.
Second, some other places did not have an easy access to obfuscated
action IDs, like transformAsm, which had to recover it from a temporary
file stored by transformCompile.
Plus, this was all pretty expensive, as each toolexec sub-process had to
make repeated calls to buildidOf with the object files of dependencies.
We even had to use extra calls to "go list" in the case of indirect
dependencies, as their export files do not appear in importcfg files.
All in all, the old method was complex and expensive. A better mechanism
is to use the original action IDs directly, as listed by "go list"
without garble in the picture.
This would mean that the hashing does not change if garble changes,
meaning weaker obfuscation. To regain that property, we define the
"garble action ID", which is just the original action ID hashed together
with garble's own content ID.
This is practically the same as the obfuscated build ID we used before,
but since it doesn't go through "go tool compile -V=full" and the
obfuscated build itself, we can work out *all* the garble action IDs
upfront, before the obfuscated build even starts.
This fixes all of our problems. Now we know all garble build IDs
upfront, so a bunch of hacks can be entirely removed. Plus, since we
know them upfront, we can also cache them and avoid repeated calls to
"go tool buildid".
While at it, make use of the new BuildID field in Go 1.16's "list -json
-export". This avoids the vast majority of "go tool buildid" calls, as
the only ones that remain are 2 on the garble binary itself.
The numbers for Go 1.16 look very good:
name old time/op new time/op delta
Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6)
name old bin-B new bin-B delta
Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6)
name old sys-time/op new sys-time/op delta
Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6)
name old user-time/op new user-time/op delta
Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
4 years ago
|
|
|
lpkg, err := listPackage(pkgPath)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
addReplace := func(str string) {
|
start using original action IDs (#251)
When we obfuscate a name, what we do is hash the name with the action ID
of the package that contains the name. To ensure that the hash changes
if the garble tool changes, we used the action ID of the obfuscated
build, which is different than the original action ID, as we include
garble's own content ID in "go tool compile -V=full" via -toolexec.
Let's call that the "obfuscated action ID". Remember that a content ID
is roughly the hash of a binary or object file, and an action ID
contains the hash of a package's source code plus the content IDs of its
dependencies.
This had the advantage that it did what we wanted. However, it had one
massive drawback: when we compile a package, we only have the obfuscated
action IDs of its dependencies. This is because one can't have the
content ID of dependent packages before they are built.
Usually, this is not a problem, because hashing a foreign name means it
comes from a dependency, where we already have the obfuscated action ID.
However, that's not always the case.
First, go:linkname directives can point to any symbol that ends up in
the binary, even if the package is not a dependency. So garble could
only support linkname targets belonging to dependencies. This is at the
root of why we could not obfuscate the runtime; it contains linkname
directives targeting the net package, for example, which depends on runtime.
Second, some other places did not have an easy access to obfuscated
action IDs, like transformAsm, which had to recover it from a temporary
file stored by transformCompile.
Plus, this was all pretty expensive, as each toolexec sub-process had to
make repeated calls to buildidOf with the object files of dependencies.
We even had to use extra calls to "go list" in the case of indirect
dependencies, as their export files do not appear in importcfg files.
All in all, the old method was complex and expensive. A better mechanism
is to use the original action IDs directly, as listed by "go list"
without garble in the picture.
This would mean that the hashing does not change if garble changes,
meaning weaker obfuscation. To regain that property, we define the
"garble action ID", which is just the original action ID hashed together
with garble's own content ID.
This is practically the same as the obfuscated build ID we used before,
but since it doesn't go through "go tool compile -V=full" and the
obfuscated build itself, we can work out *all* the garble action IDs
upfront, before the obfuscated build even starts.
This fixes all of our problems. Now we know all garble build IDs
upfront, so a bunch of hacks can be entirely removed. Plus, since we
know them upfront, we can also cache them and avoid repeated calls to
"go tool buildid".
While at it, make use of the new BuildID field in Go 1.16's "list -json
-export". This avoids the vast majority of "go tool buildid" calls, as
the only ones that remain are 2 on the garble binary itself.
The numbers for Go 1.16 look very good:
name old time/op new time/op delta
Build-8 146ms ± 4% 101ms ± 1% -31.01% (p=0.002 n=6+6)
name old bin-B new bin-B delta
Build-8 6.61M ± 0% 6.60M ± 0% -0.09% (p=0.002 n=6+6)
name old sys-time/op new sys-time/op delta
Build-8 321ms ± 7% 202ms ± 6% -37.11% (p=0.002 n=6+6)
name old user-time/op new user-time/op delta
Build-8 538ms ± 4% 414ms ± 4% -23.12% (p=0.002 n=6+6)
4 years ago
|
|
|
replaces = append(replaces, hashWith(lpkg.GarbleActionID, str), str)
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
}
|
|
|
|
|
|
|
|
// Package paths are obfuscated, too.
|
|
|
|
addReplace(pkgPath)
|
|
|
|
|
reverse: support unexported names and package paths (#233)
Unexported names are a bit tricky, since they are not listed in the
export data file. Perhaps unsurprisingly, it's only meant to expose
exported objects.
One option would be to go back to adding an extra header to the export
data file, containing the unexported methods in a map[string]T or
[]string. However, we have an easier route: just parse the Go files and
look up the names directly.
This does mean that we parse the Go files every time "reverse" runs,
even if the build cache is warm, but that should not be an issue.
Parsing Go files without any typechecking is very cheap compared to
everything else we do. Plus, we save having to load go/types information
from the build cache, or having to load extra headers from export files.
It should be noted that the obfuscation process does need type
information, mainly to be careful about which names can be obfuscated
and how they should be obfuscated. Neither is a worry here; all names
belong to a single package, and it doesn't matter if some aren't
actually obfuscated, since the string replacements would simply never
trigger in practice.
The test includes an unexported func, to test the new feature. We also
start reversing the obfuscation of import paths. Now, the test's reverse
output is as follows:
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??)
p.go:6 +0x??
main.unexportedMainFunc(...)
C.go:2
main.main()
z.go:3 +0x??
The only major missing feature is positions and filenames. A follow-up
PR will take care of those.
Updates #5.
4 years ago
|
|
|
for _, goFile := range lpkg.GoFiles {
|
|
|
|
goFile = filepath.Join(lpkg.Dir, goFile)
|
|
|
|
file, err := parser.ParseFile(fset, goFile, nil, 0)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
for _, decl := range file.Decls {
|
|
|
|
// TODO: Probably do type names too. What else?
|
|
|
|
switch decl := decl.(type) {
|
|
|
|
case *ast.FuncDecl:
|
|
|
|
addReplace(decl.Name.Name)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
repl := strings.NewReplacer(replaces...)
|
|
|
|
|
|
|
|
// TODO: return a non-zero status code if we could not reverse any string.
|
|
|
|
if len(args) == 0 {
|
|
|
|
return reverseContent(os.Stdout, os.Stdin, repl)
|
|
|
|
}
|
|
|
|
for _, path := range args {
|
|
|
|
f, err := os.Open(path)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
defer f.Close()
|
|
|
|
if err := reverseContent(os.Stdout, f, repl); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
f.Close() // since we're in a loop
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func reverseContent(w io.Writer, r io.Reader, repl *strings.Replacer) error {
|
|
|
|
// Read line by line.
|
|
|
|
// Reading the entire content at once wouldn't be interactive,
|
|
|
|
// nor would it support large files well.
|
|
|
|
// Reading entire lines ensures we don't cut words in half.
|
|
|
|
// We use bufio.Reader instead of bufio.Scanner,
|
|
|
|
// to also obtain the newline characters themselves.
|
|
|
|
br := bufio.NewReader(r)
|
|
|
|
for {
|
|
|
|
// Note that ReadString can return a line as well as an error if
|
|
|
|
// we hit EOF without a newline.
|
|
|
|
// In that case, we still want to process the string.
|
|
|
|
line, readErr := br.ReadString('\n')
|
|
|
|
if _, err := repl.WriteString(w, line); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
if readErr == io.EOF {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
if readErr != nil {
|
|
|
|
return readErr
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|