You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
garble/testdata/scripts/reverse.txt

109 lines
2.3 KiB
Plaintext

env GOPRIVATE=test/main
# Unknown build flags should result in errors.
refactor "current package" with TOOLEXEC_IMPORTPATH (#266) Now that we've dropped support for Go 1.15.x, we can finally rely on this environment variable for toolexec calls, present in Go 1.16. Before, we had hacky ways of trying to figure out the current package's import path, mostly from the -p flag. The biggest rough edge there was that, for main packages, that was simply the package name, and not its full import path. To work around that, we had a restriction on a single main package, so we could work around that issue. That restriction is now gone. The new code is simpler, especially because we can set curPkg in a single place for all toolexec transform funcs. Since we can always rely on curPkg not being nil now, we can also start reusing listedPackage.Private and avoid the majority of repeated calls to isPrivate. The function is cheap, but still not free. isPrivate itself can also get simpler. We no longer have to worry about the "main" edge case. Plus, the sanity check for invalid package paths is now unnecessary; we only got malformed paths from goobj2, and we now require exact matches with the ImportPath field from "go list -json". Another effect of clearing up the "main" edge case is that -debugdir now uses the right directory for main packages. We also start using consistent debugdir paths in the tests, for the sake of being easier to read and maintain. Finally, note that commandReverse did not need the extra call to "go list -toolexec", as the "shared" call stored in the cache is enough. We still call toolexecCmd to get said cache, which should probably be simplified in a future PR. While at it, replace the use of the "-std" compiler flag with the Standard field from "go list -json".
3 years ago
# TODO: reenable and fix
# ! garble reverse -badflag
# stderr 'flag provided but not defined'
garble build
exec ./main
cp stderr main.stderr
# Ensure that the garbled panic output looks correct.
# This output is not reproducible between 'go test' runs,
# so we can't use a static golden file.
grep 'goroutine 1 \[running\]' main.stderr
! grep 'ExportedLibFunc|unexportedMainFunc|test/main|main\.go|lib\.go' main.stderr
stdin main.stderr
garble reverse
cmp stdout reverse.stdout
# Ensure that the reversed output matches the non-garbled output.
go build -trimpath
exec ./main
cmp stderr reverse.stdout
# Ensure that we can still reverse with -literals.
garble -literals build
exec ./main
cp stderr main-literals.stderr
stdin main-literals.stderr
garble -literals reverse
cmp stdout reverse.stdout
# Reversing a -literals output without the flag should fail.
stdin main-literals.stderr
garble reverse
cmp stdout main-literals.stderr
-- go.mod --
module test/main
go 1.16
-- main.go --
package main
reverse: support unexported names and package paths (#233) Unexported names are a bit tricky, since they are not listed in the export data file. Perhaps unsurprisingly, it's only meant to expose exported objects. One option would be to go back to adding an extra header to the export data file, containing the unexported methods in a map[string]T or []string. However, we have an easier route: just parse the Go files and look up the names directly. This does mean that we parse the Go files every time "reverse" runs, even if the build cache is warm, but that should not be an issue. Parsing Go files without any typechecking is very cheap compared to everything else we do. Plus, we save having to load go/types information from the build cache, or having to load extra headers from export files. It should be noted that the obfuscation process does need type information, mainly to be careful about which names can be obfuscated and how they should be obfuscated. Neither is a worry here; all names belong to a single package, and it doesn't matter if some aren't actually obfuscated, since the string replacements would simply never trigger in practice. The test includes an unexported func, to test the new feature. We also start reversing the obfuscation of import paths. Now, the test's reverse output is as follows: goroutine 1 [running]: runtime/debug.Stack(0x??, 0x??, 0x??) runtime/debug/stack.go:24 +0x?? test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??) p.go:6 +0x?? main.unexportedMainFunc(...) C.go:2 main.main() z.go:3 +0x?? The only major missing feature is positions and filenames. A follow-up PR will take care of those. Updates #5.
3 years ago
import (
"os"
"test/main/lib"
)
func main() {
reverse: support unexported names and package paths (#233) Unexported names are a bit tricky, since they are not listed in the export data file. Perhaps unsurprisingly, it's only meant to expose exported objects. One option would be to go back to adding an extra header to the export data file, containing the unexported methods in a map[string]T or []string. However, we have an easier route: just parse the Go files and look up the names directly. This does mean that we parse the Go files every time "reverse" runs, even if the build cache is warm, but that should not be an issue. Parsing Go files without any typechecking is very cheap compared to everything else we do. Plus, we save having to load go/types information from the build cache, or having to load extra headers from export files. It should be noted that the obfuscation process does need type information, mainly to be careful about which names can be obfuscated and how they should be obfuscated. Neither is a worry here; all names belong to a single package, and it doesn't matter if some aren't actually obfuscated, since the string replacements would simply never trigger in practice. The test includes an unexported func, to test the new feature. We also start reversing the obfuscation of import paths. Now, the test's reverse output is as follows: goroutine 1 [running]: runtime/debug.Stack(0x??, 0x??, 0x??) runtime/debug/stack.go:24 +0x?? test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??) p.go:6 +0x?? main.unexportedMainFunc(...) C.go:2 main.main() z.go:3 +0x?? The only major missing feature is positions and filenames. A follow-up PR will take care of those. Updates #5.
3 years ago
unexportedMainFunc()
}
func unexportedMainFunc() {
anonFunc := func() {
lt := lib.ExportedLibType{}
if err := lt.ExportedLibMethod(os.Stderr); err != nil {
panic(err)
}
reverse: support unexported names and package paths (#233) Unexported names are a bit tricky, since they are not listed in the export data file. Perhaps unsurprisingly, it's only meant to expose exported objects. One option would be to go back to adding an extra header to the export data file, containing the unexported methods in a map[string]T or []string. However, we have an easier route: just parse the Go files and look up the names directly. This does mean that we parse the Go files every time "reverse" runs, even if the build cache is warm, but that should not be an issue. Parsing Go files without any typechecking is very cheap compared to everything else we do. Plus, we save having to load go/types information from the build cache, or having to load extra headers from export files. It should be noted that the obfuscation process does need type information, mainly to be careful about which names can be obfuscated and how they should be obfuscated. Neither is a worry here; all names belong to a single package, and it doesn't matter if some aren't actually obfuscated, since the string replacements would simply never trigger in practice. The test includes an unexported func, to test the new feature. We also start reversing the obfuscation of import paths. Now, the test's reverse output is as follows: goroutine 1 [running]: runtime/debug.Stack(0x??, 0x??, 0x??) runtime/debug/stack.go:24 +0x?? test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??) p.go:6 +0x?? main.unexportedMainFunc(...) C.go:2 main.main() z.go:3 +0x?? The only major missing feature is positions and filenames. A follow-up PR will take care of those. Updates #5.
3 years ago
}
anonFunc()
}
-- lib/lib.go --
package lib
import (
reverse: support unexported names and package paths (#233) Unexported names are a bit tricky, since they are not listed in the export data file. Perhaps unsurprisingly, it's only meant to expose exported objects. One option would be to go back to adding an extra header to the export data file, containing the unexported methods in a map[string]T or []string. However, we have an easier route: just parse the Go files and look up the names directly. This does mean that we parse the Go files every time "reverse" runs, even if the build cache is warm, but that should not be an issue. Parsing Go files without any typechecking is very cheap compared to everything else we do. Plus, we save having to load go/types information from the build cache, or having to load extra headers from export files. It should be noted that the obfuscation process does need type information, mainly to be careful about which names can be obfuscated and how they should be obfuscated. Neither is a worry here; all names belong to a single package, and it doesn't matter if some aren't actually obfuscated, since the string replacements would simply never trigger in practice. The test includes an unexported func, to test the new feature. We also start reversing the obfuscation of import paths. Now, the test's reverse output is as follows: goroutine 1 [running]: runtime/debug.Stack(0x??, 0x??, 0x??) runtime/debug/stack.go:24 +0x?? test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??) p.go:6 +0x?? main.unexportedMainFunc(...) C.go:2 main.main() z.go:3 +0x?? The only major missing feature is positions and filenames. A follow-up PR will take care of those. Updates #5.
3 years ago
"io"
"regexp"
"runtime/debug"
)
type ExportedLibType struct{}
func (*ExportedLibType) ExportedLibMethod(w io.Writer) error {
return printStackTrace(w)
}
func printStackTrace(w io.Writer) error {
// Panic outputs include "0xNN" pointers and offsets which change
// between platforms.
// Strip them out here, to have portable static stdout files.
rxVariableSuffix := regexp.MustCompile(`0x[0-9a-f]+`)
// Keep this comment here, because comments affect line numbers.
stack := debug.Stack()
stack = rxVariableSuffix.ReplaceAll(stack, []byte("0x??"))
reverse: support unexported names and package paths (#233) Unexported names are a bit tricky, since they are not listed in the export data file. Perhaps unsurprisingly, it's only meant to expose exported objects. One option would be to go back to adding an extra header to the export data file, containing the unexported methods in a map[string]T or []string. However, we have an easier route: just parse the Go files and look up the names directly. This does mean that we parse the Go files every time "reverse" runs, even if the build cache is warm, but that should not be an issue. Parsing Go files without any typechecking is very cheap compared to everything else we do. Plus, we save having to load go/types information from the build cache, or having to load extra headers from export files. It should be noted that the obfuscation process does need type information, mainly to be careful about which names can be obfuscated and how they should be obfuscated. Neither is a worry here; all names belong to a single package, and it doesn't matter if some aren't actually obfuscated, since the string replacements would simply never trigger in practice. The test includes an unexported func, to test the new feature. We also start reversing the obfuscation of import paths. Now, the test's reverse output is as follows: goroutine 1 [running]: runtime/debug.Stack(0x??, 0x??, 0x??) runtime/debug/stack.go:24 +0x?? test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??) p.go:6 +0x?? main.unexportedMainFunc(...) C.go:2 main.main() z.go:3 +0x?? The only major missing feature is positions and filenames. A follow-up PR will take care of those. Updates #5.
3 years ago
_, err := w.Write(stack)
return err
}
-- reverse.stdout --
goroutine 1 [running]:
runtime/debug.Stack(0x??, 0x??, 0x??)
runtime/debug/stack.go:24 +0x??
test/main/lib.printStackTrace(0x??, 0x??, 0x??, 0x??)
test/main/lib/lib.go:23 +0x??
test/main/lib.(*ExportedLibType).ExportedLibMethod(...)
test/main/lib/lib.go:12
main.unexportedMainFunc.func1()
test/main/main.go:16 +0x??
main.unexportedMainFunc()
test/main/main.go:20 +0x??
main.main()
reverse: support unexported names and package paths (#233) Unexported names are a bit tricky, since they are not listed in the export data file. Perhaps unsurprisingly, it's only meant to expose exported objects. One option would be to go back to adding an extra header to the export data file, containing the unexported methods in a map[string]T or []string. However, we have an easier route: just parse the Go files and look up the names directly. This does mean that we parse the Go files every time "reverse" runs, even if the build cache is warm, but that should not be an issue. Parsing Go files without any typechecking is very cheap compared to everything else we do. Plus, we save having to load go/types information from the build cache, or having to load extra headers from export files. It should be noted that the obfuscation process does need type information, mainly to be careful about which names can be obfuscated and how they should be obfuscated. Neither is a worry here; all names belong to a single package, and it doesn't matter if some aren't actually obfuscated, since the string replacements would simply never trigger in practice. The test includes an unexported func, to test the new feature. We also start reversing the obfuscation of import paths. Now, the test's reverse output is as follows: goroutine 1 [running]: runtime/debug.Stack(0x??, 0x??, 0x??) runtime/debug/stack.go:24 +0x?? test/main/lib.ExportedLibFunc(0x??, 0x??, 0x??, 0x??) p.go:6 +0x?? main.unexportedMainFunc(...) C.go:2 main.main() z.go:3 +0x?? The only major missing feature is positions and filenames. A follow-up PR will take care of those. Updates #5.
3 years ago
test/main/main.go:10 +0x??